

PROJECT REPORT FOR PIG
Partial Implementation of GUIneSS

Foundations Of LST II
Dr. Yoad Winter
2008/2009 blok 2

W. Bouvy 3079171
 E. Szekely 3330060

6.02.2009

2

TABLE OF CONTENTS
Project report for PIG .. 1

1. Introduction .. 3

1.1. Aim ... 3

1.2. Hypothesis ... 3

1.3. Problem ... 3

2. Data .. 4

2.1. The tagger .. 4

2.2. The lexicon ... 4

3. Algorithm .. 5

3.1. Overview .. 5

3.2. Step 1: tokenization and tagging ... 5

3.3. Step 2: detecting n-grams .. 5

3.4. Step 3: generating alternative phrases .. 6

3.5. Step 4: Google queries ... 6

3.6. Step 5: Processing of the results .. 7

4. Technical Problems ... 7

4.1. Google policy ... 7

4.2. The numbers of Google ... 8

5. Evaluation and comparison .. 8

5.1. Test data .. 8

5.2. Error analysis ... 9

5.3. Performance evaluation of PIG .. 10

5.4. Performance comparison with rule-based grammar checkers .. 12

5.5. Performance evaluation with phrases out of context ... 15

6. Conclusions ... 16

7. Appendix ... 17

A) Adjektivdeklination .. 17

B) Pseudo-code ... 18

C) Evaluation charts .. 19

3

1. INTRODUCTION

1.1. A IM

We aim to build a program that is reliable in detecting agreement errors in several kinds of German adjective

phrases, and is also able to give a suggestion to use endings that are more likely to be correct. We try to use a

completely data-driven method, using n-gram frequencies coming from internet queries. Our reason for

choosing for an entirely corpus-based approach, where the corpus is theoretically the whole internet, is that

like this we do not have to be concerned with the problem of severe data sparseness. We called the approach

GUIneSS: a Grammar Upgrader with Internet Search Statistics. The program that is described in this paper is

restricted on agreement issues concerning adjective phrases. It can serve as a pilot project for GUIneSS, and is

called PIG: a Partial Implementation of GUIneSS.

1.2. HYP OT HESI S

The assumption we base this approach on is the following:

“A grammatically correct phrase will in general appear significantly more often than the

same phrase containing an error.”

1.3. PR OBLEM

To test the method of GUIneSS, in PIG, we choose a rather local agreement issue in German: the inflection of

adjectives.

In a German adjective phrase, the adjective has not only a gender, number and case agreement with the noun

but its inflection form also depends on the determiner that accompanies the noun. The determiner (or the

absence of the determiner) decides on the choice between three different inflection types that are often

called strong, weak and mixed inflection classes. The next table
1
 shows an example with a masculine noun.

The variables are marked red. For the full inflection chart and further examples, please refer to Appendix A.

Gender masculine ein weicher Stoff
neuter ein weiches Kissen
feminine eine weiche Landung

Number singular der weiche Stoff

plural die weichen Stoffe

Case nominative weicher Stoff

accusative ohne weichen Stoff
dative mit weichem Stoff
genitive statt weichen Stoffes

1
 the examples were taken from:

http://www.canoo.net/services/OnlineGrammar/Wort/Adjektiv/Deklinationstyp/index.html
accessed on: 27.01.2009

4

2. DATA

2.1. THE T AGGER

PIG makes use of an independent tagger application called TreeTagger. TreeTagger is an open source,

language-independent part-of-speech tagger, developed at the Institute for Computational Linguistics of

the University of Stuttgart. It can be used to annotate text with POS and lemma information. The text

input is required to be tokenized before the tagger can be run.

Because we are using all online texts in the German language as a corpus, we obviously cannot run the

tagger over our entire reference data. Instead, we use the tagger to annotate our input text and to create

a lexicon with POS and lemma information that the program can refer to.

2.2. THE LEXI CON

Although we could have used the word list of the tagger itself, we decided against it because it would

have had to undergo a serious editing process to fit our purposes. We needed a completely plain lexicon

that contained every possible variation of a lemma. We therefore made use of the German spell check

dictionary for PSPad that has been improved and corrected at the University of Duisburg-Essen
2
. It

contains 592,430 entries. We run the tagger over this wordlist and created an annotated lexicon

containing part-of-speech and lemma information. In cases where the tagger found the lemma unknown,

2
 downloaded from: http://www.uni-due.de/~gph120/woerterbuecher/

accessed on:16.12.2008

5

we made it repeat the same word form and set it as lemma. The next chart shows a sample from our

lexicon:

TOKEN POS LEMMA

rotem ADJA rot

roten ADJA rot

röten VVFIN röten

roter ADJA rot

röter ADJA röter

roterde NN roterde

rotes ADJA rot

rötet VVIMP röten

rötete VVFIN röten

röteten VVFIN röten

rotfärbung NN Rotfärbung

rotfeder NN rotfeder

3. ALGORITHM

3.1. OVER VI EW

We begin with an outline of what the program does. In the following paragraphs we discuss the

individual steps in detail.

After PIG reads a text from the input file or input window, it prepares it for the tagging by tokenizing

it and runs the POS tagger on it. Then it extracts the phrases with the relevant POS combinations and

generates a number of alternatives for the phrases, using all variations of the word that have a

matching lemma. As a next step, it feeds each phrase into Google and runs several automated

queries saving the numbers of hits. After having calculated percentages within every phrase set, PIG

shows the results in a bar chart in a HTML interface.

3.2. ST EP 1: T OKENI ZATI ON AND T AG GI NG

The tagger will need an input file with every word on a separate line, so we split the input text on

spaces and replace all punctuation with a full stop on a separate line. Commas are removed

completely, as they can appear between adjectives that are still in one group. The resulting text is

written to a temporary file for the TreeTagger. After this, the TreeTagger is called, so that the user

can run it on the tokenized file. The TreeTagger window will appear, asking the user to give an input

and output file. Afterwards, the user can resume the program by providing the output file of the

TreeTagger.

3.3. ST EP 2: DET ECTI NG N-GR AMS

We designed POS combinations to detect phrases we are interested in the input text. We try to

match any adjective phrase with or without determiner. We also match phrases with multiple

adjectives. If there is a preposition prior to the adjective, we include it with the searches.

The program matches the combinations using a regular expression:

6

Regular expression:

(APPR)?(PPOSAT|ART|PDAT|PWAT|PIAT|PIS|CARD|PDS)?(ADJA)+(NN)

Explanation in words: If available, match a preposition; if available, match one of the determiner tags;

match any number (1 or higher) of adjectives tags; and match the noun.

3.4. ST EP 3: GENERATI NG ALT ER NATI VE PHR AS ES
We get a set of phrases, for which we will generate alternatives.

The alternative phrases are supposed to represent every possible combination with every possible

inflected form of the adjectives and determiners, thus containing all potential mistakes that can be

made but also all correct combinations. Prepositions do not vary, and we also keep the noun stable

because it serves as our base word. The alternative phrases are thus created by combining variations

of determiner types and adjectives. To produce these phrases PIG goes through the following steps:

- Look up the word in the wordlist and extract the lemma

- Search for all words within the lexicon that have the same lemma and tag

- Generate all potential phrases by combining the alternatives for each word with the alternative

for each next word, etc.

Depending on the number of words in the phrase and their possible variations, the number of

alternative phrases varies from 4 till above 30. An example:

original input alternatives:

das gestohlene Auto des gestohlene Auto
dem gestohlenem Auto
dem gestohlenen Auto
die gestohlenen Auto
der gestohlenem Auto
der gestohlenen Auto
das gestohlenen Auto
den gestohlenen Auto
dem gestohlene Auto
den gestohlene Auto
der gestohlene Auto
des gestohlene Auto
…

3.5. ST EP 4: GOOGLE QUERI ES

When creating the queries, PIG constructs a URL for the Google search, using the basic Google search

URL, and several modifiers for language:

We call the following URL:

http://www.google.com/search?hl=de&lr=lang_de&q= + the string to search.

The hl=de and lr=lang_de specify we wish German results; q= marks the term to search.

We surround the text to search with quotes, to get the results with the entire string, and not partial

matches of the string. Calling the URL will give us the resulting HTML page, from which we extract for

the number of results, using a complex regular expression to find the exact characters we need.

7

3.6. ST EP 5: PR OCES SI NG OF T HE R ES ULT S

We calculate the total number of results for each phrase set, to be able to calculate percentages. We

sort the searched terms by their percentages in descending order. Using a Java plug-in for graph

generation, we show the relevant results in a bar chart in an HTML page. Every term with a

percentage higher than 1% will be added to the data for the graph, and all the data will be added to

the table that is shown underneath it.

4. TECHNICAL PROBLEMS
In this section we deal with the technical problems we faced during the development of the program.

The discussion about the challenges regarding to the performance will be part of the evaluation

process.

4.1. GOOGLE P OLI CY

After the first few tests of PIG (approximately 350 URL calls), we encountered the following error

message:

8

This, obviously, presented us with a problem. Looking in the Google Terms of Service, we found the

following statement:

Basically, our automated searches are not allowed, and resulted in our IP address being banned from

Google. Since we focused on searching with Google, we just noted this as a problem we cannot fix.

After the completion of the first version of PIG we had an opportunity to consult other research

projects that make use of automated queries. According to their experience, Yahoo does not have the

regulations Google does concerning the volume and origin of the searches. Therefore, Yahoo might

be a better search engine to use for our purpose. The adjusting of the script to search Yahoo would

be a next step in the further development of PIG. Given the modular nature of the program, this

would not be a complex addition.

4.2. THE NUMBERS OF GOOGLE

Another issue we faced with the Google search engine was rounding. Google is a great way to get an

approximation of the number of occurrences in our corpus, the internet (specifically, German

language). However, when the number of results generated by a search exceeds a certain amount (5

digits or more), Google rounds the number to the nearest large number. Thus, a search with 654

results will actually return the value 654, but a search with 654321 results will return the value

654000, or 654300.

Another important consideration when using Google as a corpus is the fact that it is constantly

changing. The number of hits for a certain phrase can change from day to day, which means that the

list of suggestions provided by PIG can also be different from day to day. This should not pose a

problem because we are not dealing with individual occurrences but with the relation of numbers of

occurrences neither rounding, nor fluctuation of hits should have a significant impact. The only

exception would be results where data is really sparse, but one could question the reliability of this

data in any case. It might be an interesting test to run the system every seven days for a certain

amount of time on a list of phrases to see how much the Google results fluctuate over time, but this

is not within the scope of this paper.

5. EVALUATION AND COMPARISON

5.1. TEST DATA

When selecting our data for testing, our choice fell on exercises from German textbooks, because of

two main reasons. First, this data contains a wide variation of adjective phrases that PIG is dealing

Sending automated queries of any sort to Google is against our Terms of Service. This includes,

among other things, the following activities:

 Using any software that sends queries to Google to determine how a website or

webpage ranks on Google for various queries

 'Meta-searching' Google

 Performing 'offline' searches on Google

Once you detect and remove the source of automated querying, the ban on your IP address will

automatically be lifted within a short time.

9

with. Secondly, when we aim at detecting agreement mistakes, we inevitably define second language

learners as our main target group, so a text created for them seems suitable as a test data for the

program. The first part of the data is a coherent text taken from
3
, the second part are two times ten

individual sentences originating from the textbook "Duitse spraakkunstoefeningen” by Vanacker and

Timperman
4
. The test data did not undergo any editing process apart from being made suitable for

the input. In appendix C we attached a sample of the evaluation charts to have a better

understanding of how the comparison with the rule-based grammar checkers was done.

5.2. ERR OR ANALY SIS

We developed an error classification in order to distinguish between errors coming from different

sources. We suggested a number of bug fixes and prepared the results for comparison with other

grammar checking tools. The next chart shows an overview of our error classification.

Error classification

A. errors in the generator

1. possible combinations not detected in the data

2. errors of the tagger or the lexicon: 1. no alternatives found

2. not all alternatives found

3. false alternatives found

B. zero hits

C. errors in performance

1. right combinations marked as incorrect

2. wrong combinations marked as correct

A. Errors in the generator

In this section we deal with errors that occur before feeding the combinations into Google.

A.1 Possible combinations not detected in the data

We manually marked the adjective phrases in our test data that PIG was supposed to extract. We found a

hundred percent match when comparing them with the phrases that were detected. This means that all

the necessary elements were tagged correctly.

A.2 Errors of the tagger or the lexicon

However, when the alternative phrases were investigated, a few inconsistencies were found mainly due

to errors in the lexicon.

A.2.1 No alternatives found

Out of the 58 adjective phrases found in the test data, PIG was able to generate alternatives for 56. In two

cases, the lexicon did not find variations. The reason was that the lemma of the words used as attribute

were unknown to the tagger, thus each variation was annotated with itself as a lemma. Alternatively,

there are cases where the tag for a word and its alternatives seem to differ. Therefore, the program did

not find the variations in the lexicon.

The simplest way to deal with this would be to automatically generate the possible word endings, so that

it will work with every word, however, exceptions are common in German, and we would effectively be

putting a grammatical function into our program.

3
 Dreyer, H./Schmitt, R.: Lehr- und Übungsbuch der deutschen Grammatik. Ismaning/München 2000. p.223

4
 source: http://www.passito.be/index_bestanden/duits/adjektivdeklination04.htm and

http://www.passito.be/index_bestanden/duits/adjektivdeklination05.htm, accessed on: 17.01.2009

10

As this is basically a data sparseness problem, there is not much we can do about it. We can increase the

lexicon, to ensure that alternatives for these words are actually in there. We can switch to another tagger,

one that might work better, but this is speculative.

We might write a searching function, to find alternatives without using the lemma (looking for words

which differ only slightly, but have the same tag or have the same lemma, but not necessarily both, but

this might come up with words that are not alternatives. Of course, this last issue might not be a problem,

as Google will most likely give no hits for these abnormal combinations. Therefore, this function should be

the best solution for this problem.

A.2.2 Not all alternatives found

In one case, some possible alternatives were missing because the word “eine” was tagged incorrectly in

the lexicon. This bug has been fixed since. Going over all the closed word classes (thus mainly

determinants) in the lexicon to make sure they carry the part-of-speech tag that is most likely to be used

in attributive phrases would ultimately filter out this kind of error. Alternatively, we could duplicate them

with every possible tag, which will increase the corpus size, but we will be sure that one will be matched.

A.2.3 False alternatives found

In two cases, some incorrect alternatives were created because the comparative of the adjective (carrying

the same lemma) was taken along as a variety of ending. At the moment, we use a very basic length

difference check to avoid most of these. However, this is inadequate in some cases. An improvement for

this can most likely be implemented without adding too much grammatical knowledge. The false

alternatives were deleted for the evaluation in order to give fair chances to the two other grammar

checkers.

B. Zero hits

When PIG finds no matches on the internet to any of the variations in a set of phrases, it can give no

information about the correctness of the input phrase. This is a type of error we can have the least

influence on. An additional rule could filter out some of these cases, for example by making PIG check on

the results before processing them, and if no hits were found, try to replace part of the phrase by another

word that behaves the same (for example cardinals, different determinants e.g.: zweiter – dritter, ein-

kein, sein-mein). Out of the 58 phrases, 3 resulted with zero hits. We had to take these out of the

evaluation chart when comparing with the other grammar checks, because it would give us undeserved

credit (while getting an error point for one correct phrase marked as erroneous, we would also get many

credits for all the incorrect phrases being marked as zero hit and thus also erroneous). Therefore, we

decided to note that according to the test data, PIG has an effectiveness of 94.8% in being able to say

something about a phrase. Our test was too small for this to be really significant. The phrases for which

this problem occurred were exceptional, and we would have to carry out a test of greater volume to be

able to give a good estimate of how many much percentage of the cases would not occur regularly.

C. Errors in performance

The performance errors will be dealt with in the next chapter.

5.3. PERFORMANCE EVALUATIO N OF PIG

In this sequence, we show some charts that calculate the effectiveness of PIG, provided that we assume that

only the original input is correct, and everything else is false.
5
 According to this assumption, we distinguish

between 2 types of errors: right combinations marked as incorrect and wrong combinations marked as

correct. The next chart shows how PIG performs with different thresholds of percentage of occurrence. The

5
 For the remaining sections of the evaluation, we will not necessarily follow this assumption.

11

lower the threshold at which we say, we will suggest this phrase, the smaller the number of correct phrases

being filtered out. At the same time, we might end up suggesting phrases that are not correct.

We choose to stay at a threshold of 1%, which means we suggest every phrase that occurs more than 1%

compared to other alternatives, as an option for the user. As the next chart shows, we divided the phrases to three

different groups, to see whether PIG performs differently with different types of adjective phrases.

Type POS combination Average percentage of
the correct phrase

Average percentage of
correct phrase being the
highest

Percentage of hits of
errors under 1%

A adjective+noun 37.5% 46.2% 29.0%

B phrases starting with a
preposition

72.2% 88.9% 81.4%

C phrases with determiner
type+adjective+noun

53.2% 75.0% 83.2%

TOTAL 55.9% 72.5% 68.7%

The first column shows the average percentage of occurrence of the original phrase. The second column shows the

percentage of phrases being corrected rightly provided that we have a user that always chooses for the suggestion

with the highest percentage of occurrence. The third column shows what percentage of the errors was completely

filtered out. According to this chart, we can say that PIG performs much better with phrases that contain a

preposition. The reason for this is that the presence of the preposition gives a much better clue on estimating the

case in which the selected phrase might be in the sentence.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
%

4
%

7
%

1
0

%

1
3

%

1
6

%

1
9

%

2
2

%

2
5

%

2
8

%

3
1

%

3
4

%

3
7

%

4
0

%

4
3

%

4
6

%

4
9

%

5
2

%

5
5

%

5
8

%

6
1

%

6
4

%

6
7

%

7
0

%

7
3

%

7
6

%

7
9

%

8
2

%

8
5

%

8
8

%

9
1

%

9
4

%

9
7

%

1
0

0
%

Performance of GUIneSS with different thresholds

percentage of wrong answers marked as incorrect percentage of right answers marked as correct

12

As a final statement, let us look at a fictional case of a user who decides not to bother with PIG`s suggestion list,

but always take the combination with the highest number of hits. Such a user would get 72.5% of his sentences

right with the help of PIG. This relatively high percentage is partly due to a likelihood issue: a certain phrase that

has many occurrences on the web is also more likely to appear to be the correct combination in the test data. On

the same line of the argument though, mistakes that do not or very scarcely appear on the web (thus the ones PIG

definitely filters out) are also less likely to be made by a user.

5.4. PERFORMANCE COMP ARIS O N WI TH RULE-BAS ED GRAMM AR CHECKE R S

With a range of other grammar checkers on the market, we selected two to compare PIG with. The grammar

checkers we selected are the German language spell-and grammar checker of Office Word 2007 and the grammar

correcting software Duden Korrektor Plus 5.0
6
, developed at the language technology department of Duden.

We generated test data for the two grammar checkers by submitting every alternative PIG generated back into the

sentence, gathering all these sentences (1006 sentences before error removal as specified in 0 ; 884 sentences

afterwards), and having each grammar checker evaluate these sentences.

Below you will see a table of the number of sentences marked as correct, and the number of sentences marked as

incorrect, for each of the grammar checkers.

Duden: Word2007: PIG:

correct incorrect

240 644

correct incorrect

386 498

Correct incorrect

147 737

From this table alone, we can derive several things.

 Word2007 is obviously the least critical of the three, with 45.7 percent marked as correct.

 PIG, using a 1% threshold, is the most critical of the three, with only 15.7 percent marked as

correct.

 Duden is in between, with 28.8 percent marked as correct.

Now, given these numbers, we cannot know whether PIG is too critical, or the others are too lenient. Next, we will

compare the grammar checkers with each other, in pairs.

Word2007 & Duden:

 Both correct Both incorrect Word2007: incorrect
Duden: correct

Word2007: correct
Duden: incorrect

Result 156 414 84 230

Agreement Disagreement

0,6447964 0,355204

Here we can clearly see the differences between Word2007 and Duden, as 230 of the 884 sentences are classified

as correct by Word2007, and incorrect by Duden. But apparently, there are also cases where Word2007 is more

strict than Duden.

6
 For further information please refer to: http://www.duden.de/deutsche_sprache/index.php?nid=113&flip=113

accessed on: 2.2.2009

13

PIG & Word2007:

 Both correct Both incorrect Word2007:incorrect
PIG: correct

Word2007:correct
PIG: incorrect

Result 115 466 32 271

Agreement Disagreement

0,6572398 0,34276

Again we can see the difference in strictness. Noticeably, like with Duden, there are a few cases that PIG classifies

as correct, while Word2007 claims they are incorrect.

PIG & Duden:

 Both correct Both incorrect PIG: incorrect
Duden: correct

PIG:correct
Duden: incorrect

Result 99 596 141 48

Agreement Disagreement

0,7861991 0,213801

Here we see the agreement between PIG and Duden is a lot higher than the agreement of either with Word2007.

This makes sense, they are both a lot more strict than the Word2007 grammar checker. Here, too, are cases where

the less strict grammar checker has classified sentences as incorrect, while the more strict one has not. In the next

chart we will compare all three.

PIG & Word2007 & Duden:

Agreement Disagreement

0,5441176 0,455882

We see from the agreement that there are a lot of cases where there is some disagreement between the three

grammar checkers. For analysis, we will assume that when two out of three agree on a classification, that

classification is most likely to be true.

14

PIG part of majority vote PIG not part of majority vote

795 89

Now, this looks promising. This would imply that in 90% of the cases, PIG was right, by our previous assumption. Of

course, this could also mean PIG is consistently siding with the wrong result, so we will have to look at it more

closely.

Accuracy of PIG where Word2007 and Duden agree:

This is a good way to exclude strange behavior from Word and Duden in our comparison, as we can see in the table

above that a large part of the disagreement between the three grammar checkers is because of incorrect

classifications by the Word2007 grammar checker.

Total of agreed values between Duden and Word2007: 570

We can assume these are an accurate representation of the strength of using both grammar checkers combined,

as these are the cases they agree. Given these values, PIG gives the same result for 481 of them. This means there

is a 0,843859649 agreement between PIG and the others, if Word2007 and Duden are seen as one grammar

checker.

Specifically, there are only 25 cases where PIG marked something as correct while both Word2007 and Duden

agreed it is incorrect, and there are 64 cases where PIG marks something as incorrect while Word2007 and Duden

agree it is correct.

795

89

PIG is part of the majority vote

PIG part of majority
vote

PIG not part of
majority vote

0.84

0.16

Comparison with
(Duden+Word2007 paired)

Agreement

Disagreement

15

The other 314 are cases where Word2007 and Duden disagree:

Where Duden and PIG agreed (thus according to our assumption above, were right) and Word2007 disagreed:

• 7 cases where Word2007 said incorrect, while the others said correct

• 207 cases where Word2007 said correct, while the others said incorrect

The above shows how unreliable (lenient) the Word2007 grammar checker is compared to the other two, since it

allows far more combinations. Specifically, we can see that 207 of the 314 cases where Duden and Word2007

disagree are cases where the Word2007 grammar checker is not strict enough. We already saw, in our basic

comparison, that the Word2007 grammar checker marks a significantly higher amount of the cases as correct,

while Duden and PIG clearly agree that these are incorrect.

Where Word2007 and PIG agreed and Duden disagreed:

• 77 cases where Duden said correct, while others said incorrect

• 23 cases where Duden said incorrect, while others said correct

Knowing what we now know of the Word2007 grammar checker, the 23 cases are rather dubious. These 23 cases

may very likely be faults of PIG (as Word2007 agrees with half of the input anyway), which can mostly be explained

by an incorrect combination getting just enough Google results to get above the 1% used for this classification.

The 77 cases, though, are more interesting. Duden appears to allow these, while they are quite likely incorrect.

Word2007, weak as it is, even manages to mark these as incorrect, and they apparently have an insignificant or

even zero amount of results on Google.

To summarize, both when we compare our results with the paired results of Duden and Word2007 (which will

most likely be reliable for correctness), and when we look at PIG in the majority vote (which is less reliable for

actual correctness, but more reliable for agreement with either or both) we can see that PIG is quite close to the

results of the other two grammar checkers. For pure comparison the majority vote will probably be the most

significant.

5.5. PERFORMANCE EVALUATIO N WIT H PHRAS ES OUT O F CONT EXT

In this last section of our evaluation we look at the correctness of the generated phrases out of context. This

means, we distinguish between combinations that are possible in other sentences (with a different case for

example) and the combinations that are not possible at all. To achieve this, we asked a native speaker to mark our

entire evaluation data, judging the alternatives for grammaticality.

After that we compared agreement between the grammar checkers and the manual judgments to find the

following data:

PIG Office Word 2007 Duden Korrektor Plus 5.0

96.0% 66.7% 81.2%

These seemingly impressive results are partly due to the high number of erroneous phrases as opposed to

grammatical ones. And detecting errors is what PIG is performs well in. At the same time, if we look at the

suggestions PIG gives, (2.9 suggestions on average) we only find a correctness of 76.2%. This means, almost 1 out

16

of 4 of PIG`s suggested phrases are not at all possible, in no other context either. The evaluation of the suggestions

of Office Word has not taken place within this project, because the comparability with PIG is questionable, not

knowing if Office Word takes context into account. Duden Korrektor does not give any suggestions when incorrect

phrases are encountered, only a warning message for further consideration. To conclude, PIG does sort out 95.5%

of the incorrect combinations, but is apparently less reliable when it comes to suggesting a correct phrase.

6. CONCLUSIONS
To summarize, let us revisit our initial hypothesis, according to which “a grammatically correct phrase will in

general appear significantly more often than the same phrase containing an error”. When evaluating PIG we were

faced with the likelihood issue, according to which PIG better at correcting mistakes that are unlikely to appear,

than errors that are very likely to be made, because those might appear on the web as well. However, the

hypothesis has proven to be right, considering that 95.5% of the erroneous phrases were filtered out by PIG.

We can conclude that even though there are several considerations to be made, within the field it is aimed at, PIG

seems to approach the quality of the two rule-based grammar checkers. From this, we can assume that the

GUIneSS concept might be viable, though it remains to be seen whether it will work as well with other

combinations.

17

7. APPENDIX

A) ADJ EKTI VDEKLI NATI ON

18

B) PS EUDO-CODE

Dictionary Dict = new Dictionary()

GoogleSearch Google = new GoogleSearch()

HTMLResult Html = new HTMLResult()

PredefinedThreshold = 1%

// Step 1: TOKENIZATION AND TAGGING

Text = Read text from input or file

// Prepare text for tagging

Text = replace(“\s”, “\n”)

Text = replace(“,”,“”)

Text = replace(“[\.!\?]”,”\n.”)

// Tag text

external_call(wintreetagger.exe)

// Step 2: DETECTING N-GRAMS

Wordgroups = get_all_matching(

“(APPR)?(PPOSAT|ART|PDAT|PWAT|PIAT|PIS|CARD|PDS)?(ADJA)+(NN)”,Text)

// For each word group:

for(Wordgroups as Wordgroup)

// Step 3: GENERATING ALTERNATIVE PHRASES

Alternatives = Dict.generate_alts(Wordgroup)

// Step 4: GOOGLE QUERIES

// Google search Wordgroup

Results[Wordgroup] = Google.search(Wordgroup)

// Google search each alternative

foreach(Alternatives as Alt)

 Results[Alt] = Google.search(Alt)

// Step 5: PROCESSING OF THE RESULTS

// Calculate total count by summing all results

Total = sum(Results)

// Calculate percentage of Total and sort the list

Percentages = sort(apply(Results, divide_by(Total)))

// Write the results to the html table; write all with more than

a predefined percentage to the graph

Html.graph(Percentages, PredefinedThreshold)

Html.table(Percentages)

19

C) EVALUATI ON CHART S

33 GUIneSS Microsoft Word 2007 Duden Korrektor

amount percentage

durch die chemische Industrie (original input) -1880 99.84% - C

durch die chemischen Industrie -2 0% X chemische X

durch der chemischen Industrie -1 0% X die chemische X

durch das chemische Industrie 0 0% X die X

durch dem chemische Industrie 0 0% X die C

durch den chemische Industrie 0 0% X die X

durch der chemische Industrie 0 0% X die X

durch des chemische Industrie 0 0% X die X

durch das chemischem Industrie 0 0% X die chemische X

durch dem chemischem Industrie 0 0% X die chemische X

durch den chemischem Industrie 0 0% X die chemische X

durch der chemischem Industrie 0 0% - X

durch des chemischem Industrie 0 0% X die chemische X

durch die chemischem Industrie 0 0% X chemische X

durch das chemischen Industrie 0 0% X die chemische X

durch dem chemischen Industrie 0 0% X die chemische X

durch den chemischen Industrie 0 0% X die chemische X

durch des chemischen Industrie 0 0% X die chemische X

durch das chemischer Industrie 0 0% X die chemische C

durch dem chemischer Industrie 0 0% X die chemische X

durch den chemischer Industrie 0 0% X die chemische X

durch der chemischer Industrie 0 0% X die chemische X

durch des chemischer Industrie 0 0% X die chemische X

durch die chemischer Industrie 0 0% X chemische X

durch das chemisches Industrie 0 0% X die chemische X

durch dem chemisches Industrie 0 0% X die chemische X

durch den chemisches Industrie 0 0% X die chemische X

durch der chemisches Industrie 0 0% - X

durch des chemisches Industrie 0 0% X die chemische X

durch die chemisches Industrie 0 0% X chemische X

34 GUIneSS Microsoft Word 2007 Duden Korrektor

amount percentage

verschmutzten Fluss -479 41.44% - C

verschmutztem Fluss -252 21.80% - C

verschmutzter Fluss (original input) -224 19.38% - C

verschmutzte Fluss -192 16.61% - X

verschmutztes Fluss -9 0% X verschmutzter X

	Project report for PIG
	Introduction
	Aim
	Hypothesis
	Problem

	Data
	The tagger
	The lexicon

	Algorithm
	Overview
	Step 1: tokenization and tagging
	Step 2: detecting n-grams
	Step 3: generating alternative phrases
	Step 4: Google queries
	Step 5: Processing of the results

	Technical Problems
	Google policy
	The numbers of Google

	Evaluation and comparison
	Test data
	Error analysis
	Performance evaluation of PIG
	Performance comparison with rule-based grammar checkers
	Performance evaluation with phrases out of context

	Conclusions
	Appendix
	Adjektivdeklination
	Pseudo-code
	Evaluation charts

