Inquiry dialogues inside a framework for

persuasion
Author: Supervisors:
Wouter Bouvy Henry PRAKKEN
(45 ECTS) Liz BLACK

February 7, 2011

Abstract

This thesis is a comparison of a system for inquiry dialogues and a frame-
work for persuasion dialogues in order to reconcile their differences, de-
termine which differences cannot be reconciled and determine the cost of
this reconciliation to their fundamental properties.

The systems that are compared are Prakken’s framework for persuasion
dialogues and Black and Hunter’s system for inquiry dialogues. Two new
systems are defined where the structure of Black and Hunter’s system is
described using Prakken’s framework. In one of the systems, the structure
of Black and Hunter’s system is adapted, while maintaining most of the
fundamental properties. In the other system, Black and Hunter’s system
is unchanged, and Prakken’s framework is adapted where necessary. For
both systems, conversion functions are given and proofs are provided to
show that dialogues in the systems are equivalent to dialogues in the
original system.

From the two new systems, it is shown that inquiry and persuasion are
closely related, and that both systems are capable of expressing both types
of dialogue with a few specific alterations. Most research that has been
done for persuasion dialogues is therefore likely to be applicable to inquiry
dialogues as well.

Contents

1 Introduction 5
1.1 Primary aim 8
1.1.1 Sub-questions oL oo 8
1.2 Outline e 8
2 Black and Hunter’s Inquiry Dialogues 10
2.1 Beliefs and argumentation oL 10
2.2 Dialogues 16
2.2.1 Argument inquiry dialogue 20
2.2.2 Warrant inquiry dialogue 21
2.2.3 Agent strategies Lo 23
2.3 Examples e 26
2.4 Privacyissue 28
2.5 Soundness and completeness 28
2.6 Summary 29
3 Prakken’s framework for persuasion dialogues 30
3.1 Definition of the framework 30
3.2 Elements of the framework, 32
3.2.1 Dialectical grapho oL 32
3.22 MOVESo e 33
3.2.3 Attack and defeat 34
3.3 Termination and outcome 34
3.3.1 Dialogical status and outcome of dialogue 35
3.4 Soundness and fairness 35
3.4.1 Logical completion 35
3.5 Relevance L 36
3.6 Summary e e 37

4 Comparing Black and Hunter’s inquiry dialogues with Prakken’s
framework 38
4.1 Fundamental properties of inquiry dialogues 38
4.2 Differences. 39
4.2.1 Minor Differences L. 40
4.3 Mapping 40
4.3.1 Arguments 43
4.3.2 Argument concatenation ® 44
4.4 Optional modifications after conversion 45
4.4.1 The underlying logic 45
4.4.2 Expanding for more than two agents using role switching 46
4.5 SUMMATY . . o v v et e e e e e 47

5 Adapted version of Black and Hunter’s system for inquiry dia-

logues that is compatible with Prakken’s framework 48
5.1 Framework definition Lo 48
5.2 Argumentation theory 50
5.2.1 Roles, players and agents 50
5.3 Communication language 51
5.3.1 Definition of performatives and communication language . 54
5.3.2 Attack and surrender relations 55
5.4 Moves 57
5.5 Commitment function 57
5.6 Turntaking L o 58
5.7 Protocol 58
5.7.1 Well-formed dialogues 62
5.7.2 Protocol additions based on underlying logic 63
58 Outcome. 63
5.9 Dialectical tree and graph oL 64
5.9.1 Dialectical tree o oL 64
5.9.2 Dialectical graph oo oL 69
5.10 Example dialogues oL o 71
5.11 Converting dialogues to and from Black and Hunter’s system for
inquiry dialogues oo 78
5.11.1 Converting from Black and Hunter’s system 78
5.11.2 Converting to Black and Hunter’s system 84
5.11.3 No l:1relation 89
5.11.4 Proof of equivalence 90
5.12 Generating dialogues L 0oL 93
5.12.1 Proof of equivalence 94
5.13 Fundamental properties 96
5.13.1 Removing propose 96
5. 14 Summary e 99
6 Adapted version of Prakken’s framework that is compatible
with Black and Hunter’s system for inquiry dialogues 100
6.1 Framework definition o 0oL 100
6.2 Argumentation theory L L. 100
6.3 Communication language 101
6.3.1 Attacking reply relation R, and surrendering reply rela-
tion Ry o o o 102
6.3.2 Move targeting Lo 102
6.3.3 Playerroleso 104
6.4 Moves and dialogues Lo oL 106
6.5 Commitment function oL 106
6.6 Turntaking function 0oL 106
6.7 Protocol 107
6.7.1 Termination 109
6.7.2 Well-formed dialogues 109

6.7.3 Protocol additions based on underlying logic 109

6.8 Outcome and dialectical tree and graph 110
6.8.1 Dialectical tree and graph 110
6.8.2 Outcome 112

6.9 Example dialogues o oL 113

6.10 Converting dialogues to and from Black and Hunter’s system for
inquiry dialogueso L L Lo 116
6.10.1 Move conversiono 116
6.10.2 Dialogue conversion 117

6.11 Generating dialogues Lo oL 120
6.11.1 Proof of equivalence 121

6.12 Fundamental properties 122
6.12.1 Compatibility with Prakken’s original framework 123

6.13 Summary 124

Conclusion 126

7.1 Research question. 126

7.2 Relevance 128

7.3 Proposed research 0oL 128

1 Introduction

For years, the field of Artificial Intelligence has seen a shift from the focus on
standalone computer systems, into a situation of multiple connected systems,
agents, working together or competing to achieve certain goals. These days,
there are many protocols and logics to choose from when constructing a system
for agents.

Dialogue games are a method of formalising the communications between
software agents. The agents (players) construct a dialogue using the rules of
the dialogue game. Through dialogue, agents can model many types of be-
haviour. Legal reasoning can be modeled, either cooperative or adversarial. By
nature, dialogue games are defeasible; any argument that has been asserted can
be defeated by contrary evidence asserted by the other agent.

Walton and Krabbe set out to classify the different types of dialogue game. In
[10], they identified six types of dialogue games, based on the main goal of the
dialogue and the initial starting situation. The tree below was shown in [10].

I3 THERE A CONFLICT?

/\

Eal

IS RESOLUTION THE GOAL? I3 THERE A COMMON
PROBLEM TO BE SOLVEDT
PERSUASION 13 SETTLEMENT THE GOAL? THIS A INFORMATION
SEEKING

Figure 1: Walton and Krabbe’s decision tree to determine a dialogue type, from
[10].

First, there are dialogue games that are based on a conflict. Conflicts about
beliefs can be resolved through rational dialogue, wherein one player defends
the belief and the other attacks it, until a stable agreement has been reached.
This type of dialogue game is called persuasion. Walton and Krabbe define
persuasion as:

Persuasion dialogue (critical discussion) always arises from a conflict
of opinions, and its goals is to resolve the conflict, to arrive at a final
outcome of stable agreement in the end. [from: [10], page 79]

Alternatively, if there is no conflict about a belief, because the agents’ individual
belief base is not sufficient to support the belief or its negation, an inquiry
dialogue allows agents to converse about a topic in a cooperative setting. Agents
in an inquiry dialogue jointly construct an argument for or against the topic of
the dialogue, sharing their beliefs whenever it is appropriate. Walton an Krabbe
define inquiry as:

Inquiry (...) is like persuasion dialogue (...) in that it aims at a
stable agreement. However, (...) it arises from a problem rather
than a conflict: something is not known definitely to be true or false.
This not knowing can be a problem where it is useful to clarify or
establish one way or the other whether something can be proved or
not, according to standards of proof appropriate for the particular
context of the inquiry. [from: [10], page 80]

The other dialogue types are also defined by their initial situation and main goal:
information seeking allows agents to gather information from a source with
vastly more knowledge than they have; negotiation allows agents to construct
a resolution for their conflicting interests, deliberation allows agents to jointly
decide on an action to take, proposing and evaluating different possible actions;
eristic allows agents to air their grievances and seek compensation.

Initial Situation Conflict |Open Problem | Unsatisfactory
Spread of
Main Goal Information
Stable Agreement/Resolution Persuasion Inquiry Information
Seeking
Practical Settlement/
Decision (Not) to Act Negotiation| Deliberation

Reaching a (Provisional)
Accommodation Eristic

Figure 2: Walton and Krabbe’s table of dialogue types based on main goal and
initial status, from [10].

Since Walton and Krabbe’s definition much has been written about the different
types of dialogues. Persuasion and deliberation are the more popular of the six
types, while many of the others remain sparsely discussed.

The difference between the tree and the table above is striking. The table clearly
shows similarities between several of the dialogue types that are not visible in
the tree. Specifically, persuasion and inquiry appear to be quite different in
the tree, but are somewhat related in the table. Persuasion and inquiry have
the same main goal, according to the table, though they differ on the initial

situation.

The question that arises from the table is whether the difference between a
‘conflict’ and an ‘open problem’ is sufficient to separate the persuasion and in-
quiry dialogue types' and similarly, negotiation and deliberation dialogue types.
Since deliberation and negotiation are more complex than persuasion and in-
quiry, persuasion and inquiry are the easiest dialogue types to examine this
difference with.

This thesis focuses on the similarity between persuasion and inquiry dialogues,
using Prakken’s framework for persuasion dialogues defined in [8] and Black and
Hunter’s system for inquiry dialogue defined in [2] and [3] to examine persua-
sion and inquiry dialogues, respectively. Given the limited amount of research
relating to inquiry dialogues, this similarity with persuasion dialogues might be
used to show that many of the research relating to persuasion dialogues can also
be applied to inquiry dialogues.

Black and Hunter’s inquiry dialogue system [3] is a relatively new addition to the
collection of dialogue games, specifically to the relatively small and infrequently
expanded collection of articles discussing inquiry dialogues®. The first of Black
and Hunter’s articles dates from 2007 [2], and the most detailed article dates
from 2009 [3]. As such, it warrants more attention, in order to find distinctive
properties of this under-explored form of dialogue system.

In [8] Prakken proposes a framework to support the specification and study of
formal properties of specific dialogue protocols for persuasion dialogues. Prakken
examines properties such as strong or weak relevance, soundness and complete-
ness, termination, dialogical status and the outcome of dialogues.

The aim of this thesis is to determine whether Prakken’s framework is compati-
ble with Black and Hunter’s system, and at what cost possible incompatibilities
can be resolved. By determining whether these systems are equal, more can
be learned about inquiry dialogues in general and Black and Hunter’s system
for inquiry dialogues specifically. By doing this, additional insight into both
dialogue types and the compatibility of Prakken’s framework with different di-
alogue types.>

As an aside, following the norm in dialogue systems, both systems assume two
parties in the dialogue. However, the system for inquiry dialogues is claimed
to be easily extendable to encompass more than two parties [3]: “Many of the

I For example, from the point of view of a judge, a court case (which is generally considered
a persuasion dialogue) could be considered an inquiry dialogue where each player is limited
to attacking or defending the dialogue topic.

28ee [1], [6] and [7]

31In [4] Prakken’s framework is adapted to function for deliberation dialogues, but it requires
extensive changes.

difficult issues associated with multiparty dialogues (...) can be easily over-
come here due to the collaborative and exhaustive nature of the dialogues we
are considering”. This will be considered throughout the thesis.

Black and Hunter’s articles have also provided a general agent strategy for in-
quiry dialogues, which guarantees that dialogues generated with this strategy
are both complete and sound, benchmarked on the union of the belief bases
of the agents. This means that inquiry dialogues constructed in this way are
a reliable source of information if the agents that construct them are consid-
ered reliable, which opens the possibility of practical applications in which this
reliability is required.

1.1 Primary aim

The primary goal of the thesis is to learn more about inquiry dialogues, by de-
termining basic properties through compatibility with Prakken’s framework and
by using Prakken’s dialogue framework to specify a dialogue system for inquiry
that builds on Black and Hunter’s work. Where possible, properties from both
systems are made applicable to the adapted system.

What are the consequences of adapting Black and Hunter’s inquiry dialogues
to Prakken’s persuasion framework, and vice versa, and what properties can we
derive from this? What can we say about the system for inquiry dialogues on
the basis of its similarities and differences with persuasion dialogues?

1.1.1 Sub-questions

1. Can Prakken’s framework be applied to inquiry dialogues?

2. What modifications are necessary to allow inquiry dialogues to be trans-
lated to the framework and vice versa, and at what cost?

3. Which properties can be shown to hold for the (partially) adapted sys-
tem(s), which can be excluded, and which cannot be determined?

4. Given the above, how does the system for inquiry dialogues compare to
persuasion dialogues?

5. Given the above, what makes the system for inquiry dialogues significantly
distinct from persuasion dialogues?

1.2 Outline

First, the original systems are described: Black and Hunter’s system for inquiry
dialogue in chapter 2 and Prakken’s framework for persuasion in chapter 3.
Unless mentioned specifically, definitions in the chapters describing Prakken’s

framework and Black and Hunter’s system are from respectively [8] and [3].

Next, in order to determine the compatibility between Prakken’s framework
for persuasion dialogues and Black and Hunter’s system for inquiry dialogues, a
detailed mapping of definitions and properties is made, determining which prop-
erties are comparable, which will need adjusting and which are problematic.

The core of this thesis consists of two systems: one system is a version of
Prakken’s framework in which Black and Hunter’s system for inquiry dialogues
has been adapted to fit into Prakken’s framework without any changes to
the framework whatsoever. The other system works the other way around:
Prakken’s framework is adapted to Black and Hunter’s system without any
changes to Black and Hunter’s system.

The two systems will show that a bisimulation between Prakken’s system for
persuasion dialogues and Black and Hunter’s system for inquiry dialogues is pos-
sible, if only well-formed dialogue states are considered. A relation is a bisim-
ulation iff it is a simulation of one system in a second system and its inverse
is a simulation of the second system in the first system. For our system, this
basically means that every well-formed (but not necessarily finished) dialogue
that can be formulated with either system, can be converted to a well-formed
dialogue in the other system.

To elaborate, the schematic below # displays consecutive well-formed dialogues
in the different systems. A proof will be provided for the bidirectional arrows.

Prakken’s Adapted Black and Hunter’s
framework system system
d; < Dy — DY
! ! l
dj < Df < Df
! 1 1
dp, < D7 — T

From this, conclusions are drawn about the similarity of the two systems, and
generalizations are made about Prakken’s framework, Black and Hunter’s sys-
tem and persuasion and inquiry dialogues in general.

d;,dj,dg are well-formed dialogues in Prakken’s framework

DY, sz, Df are well-formed dialogues in the adapted system

Df, Dg, Dy are well-formed dialogues in Black and Hunter’s system
andi<j<kandp<g<randz<y<z

4Such that

2 Black and Hunter’s Inquiry Dialogues

As was mentioned in the introduction, inquiry dialogues are a form of dialogue
game that allow two agents to jointly increase their beliefs by constructing
arguments or dialectical trees of arguments from beliefs that may not have been
previously available to all of them.

Elizabeth Black and Anthony Hunter [2],[3] expand on this by defining argument
and warrant inquiry dialogues.

In argument inquiry dialogues the goal of the players is to find all arguments
they can to support a given topic, by cooperatively providing beliefs that may
support the topic and supporting arguments for those beliefs.

Warrant inquiries, on the other hand, construct a dialectical tree for the topic.
This tree contains arguments constructed by the agents during the dialogue.
These arguments have been constructed from the combination of an agent’s
individual beliefs and arguments that have already been made. An argument in
the tree counters arguments in the node above. Unlike in persuasion dialogues,
there is no commitment in inquiry dialogues; an agent may assert an argument
in one move and a counterargument against it in the next move. The root of the
tree is labelled with the first argument that has been asserted with the topic of
the dialogue as claim, and status of the argument at the root can be established
by labeling the dialectical tree, determining whether the topic is warranted.

2.1 Beliefs and argumentation

DeLP [5] considers two kinds of program rules: defeasible rules to represent
tentative knowledge and strict rules to represent strict knowledge. Using these,
DeLP allows the construction of arguments for or against a topic. These argu-
ments for and against a topic are represented in a dialectical tree, consisting of
different argumentation lines with the topic as root node. Several definitions
that will follow are definitions of concepts from DeLP, for example the defeasi-
ble derivation from Definition 5, arguments and subarguments from Definition
6 and the attack relation between arguments and argumentation lines from Def-
inition 10.

Black and Hunter’s system for inquiry dialogues is based on a dialogue with
two participants, though the authors claim that it is straightforward to extend
it to allow for more than two players due to its cooperative and exhaustive
nature. All beliefs in the system, whether it is a belief about the state of the
world (fact) or a belief about the behavior of the world (rule), is assumed to be
defeasible; everything can be argued about and no fact is protected from being
disputed. These beliefs are stored in an agent’s belief base, with a preference
level attached to each fact and each rule®. The lower the preference level, the

5Note that this means that agents can have different preference levels for beliefs, and may
even use a different scale (i.e. 1,2,3,4 or 1,1,1,2 for their 4 strongest beliefs).

10

more preferred a fact or rule is.

Before the notions of Players, defeasible facts and rules and belief bases are
formally defined, a few comments about notation need to be made. A restricted
set of propositional logic is used for which:

e All beliefs are assumed to be defeasible, the sets of strict rules and facts
are assumed to be empty.

e A literal is either an atom « or a negated atom —«
e I is used to denote classical consequence relation

e | is used to denote classical contradiction

Definition 1. Players in Black and Hunter’s system for inquiry dialogues
are elements of the set Z, a set containing the names of the players according to
some naming convention, in this case numeric. In Black and Hunter’s articles,

T ={1,2}.

Definition 2. Defeasible facts are denoted «, « being a literal. Defeasible
rules consist of a conjunction of literals a; (0 < ¢ < n), implying a conclusion
Qp:

ar N...Nay — Qg

Next, a measure is determined to compare the strength of the defeasible facts
and rules. For this measure, a preference level is determined and defeasible facts
and defeasible rules are paired with a preference level to form beliefs.

Definition 3. A belief b is a tuple (¢, L) containing the defeasible fact or
defeasible rule ¢ and a preference level L € N;. A function pLevel((¢,L)) = L
is defined accordingly. If ¢ is a defeasible fact, b is called a state belief; if ¢ is
a defeasible rule, b is called a domain belief.

Several sets are defined accordingly: The set of beliefs is denoted B. S is
the set of all state beliefs, with the related S* denoting all defeasible facts:
S* = {¢|(¢,L) € S§}. Similarly, R is the set of all domain beliefs, with R*
denoting all defeasible rules: R* = {¢| (¢, L) € R}. Finally, the set B* denotes
all defeasible facts and rules: B* = {¢|(¢,L) € B} = S* UR*.

Definition 4. The belief base of an agent x is a finite set denoted as X%,
where x € 7 and X* C B.

We will use a running example to illustrate the definitions. An example of a
belief base is: {(a, 1), (-a,2), (a — b,3)} and (~a — —b,2) 5. Some of these
beliefs can be combined, for example the rule starting with a and the fact a.

Swhich are two facts and two rules, respectively

11

One way to combine these beliefs is in a defeasible derivation.

Definition 5. A defeasible derivation of « (based on a belief base ¥ C B)
is a sequence of unique literals which defeasibly derive the last item of the
sequence, denoted as @~ ¢: Yoy, € a1,...,Qn,...,qy either (a,, L) € ¥ or
(BiN...ABj = aum, L") € ¥ and every literal in 3; (1 < ¢ < j) is an element oy,
in the sequence (k < m).

The defeasible derivations from the running example belief base are a, a,b, —a
and —a,—b. Now, arguments are defined; each is structured as a tuple, with the
latter part being the conclusion of the argument (the last element of a defeasible
derivation), and the first a minimal set of beliefs that are needed to derive the
conclusion of the argument (the facts and rules).

Definition 6. An argument A constructed from @ is a tuple (P, ¢) with ¢
being the claim of the argument, a defeasible fact denoted by Claim(A), and @
being the support of the argument, a minimal set of premises that defeasibly
derive ¢, denoted by Support(A). A subargument of A is an argument A;
where Support(A;) C Support(A).

® must defeasibly derive ¢ and it must not defeasibly derive anything that
conflicts with ¢: Vo, ¢" if | ~ ¢ and | ~ ¢’ then ¢ U ¢’ ¥ L.

The set of arguments that can be constructed from a belief base ¥ is denoted

A(D).

Definition 7. The preference level of an argument is defined as
pLevel(A) =
pLevel(¢) such that ¢ € Support(A)
and
Vo' € Support(A) :
pLevel(¢') < pLevel(9)

Given the previously defined running example belief base consisting of (a, 1),
(—a,2), (a — b,3) and (—a — —b,2), the following arguments can be con-
structed.

Al=" ({(a,1)},0)

A2 = ({(-a,2)},~a)

A3 = ({(a,1),(a — b,3)},b)

A4 = <{(ﬁa, 2)7 (ﬁa — ﬁb, 2)}, ﬁb>

Obviously, the above belief base contains conflicting fact and rules, but Black
and Hunter allow this property for the belief base. Arguments, on the other
hand, cannot be allowed to contain facts or rules that can lead to conflicting
conclusions.

In the above list of arguments, several arguments have conflicting claims, for

12

example Al concludes a, but A2 concludes —a. These arguments could be used
in the dialogue to attack each other or arguments that contain their conflicting
counterparts.

Definition 8. An attack relation between two arguments A and A’, or
simply A attacks A’, is defined as the attacker’s claim conflicting with either
the claim of the object of the attack, or one of the subarguments in the object
of the attack:

A and A’ conflict iff Claim(A) U Claim(A’) F L. If A conflicts with a subar-
gument A} of A’ then A attacks A’ at subargument A}. Note that if A and A’
conflict, A attacks A’ at A’, and vice versa.

In the running example, Al attacks A4 at A2, A2 attacks A3 at Al and A3
attacks A4 at A4 (and the converse, A4 attacks A3 at A3). Of course, Al and
A2 attack each other as well.

A3

N
A2 A4
| PN
A1l Al A3
\ ‘ \
... A2 ...
\

The preference level determines whether an attack is successful. As was men-
tioned earlier, the lower the preference level, the more preferred a fact or rule
is. For arguments, the preference level is determined to be the preference level
of the least preferred (the highest value) of the beliefs supporting it. Given
arguments ¢ and 1), where ¢ attacks 1, if the attacker is more preferred than
the argument it is attacking, the attack succeeds and ¢ is a proper defeater for
1. If the attacker has a higher preference level, v is preferred over its attacker
and ¢ will not be able to defeat it. If the preference levels are equal, ¢ is a
blocking defeater for i and vice versa.

Definition 9. Given arguments A, B and SB, with SB a subargument of
B, where A attacks B at SB, if pLevel(A) < pLevel(SB) then A defeats
B, specifically if pLevel(A) < pLevel(B) then A is a proper defeater of B,
otherwise A is a blocking defeater of B and vice versa.

An attacker may itself also be attacked. If it is defeated by an attacker of
its own, it should not be able to defeat any arguments, until its attackers are
defeated. This means that in order to determine whether an attacker is truly

13

successful, we must not only consider the preference level compared to its victim,
but we must also evaluate all arguments that successfully defeat the attacker.
Of course, to consider the attacker’s defeaters, we must consider their defeaters,
and so on.

Definition 10. An argumentation line is a sequence of arguments [(®g, ¢o),
(®1,¢1),...] such that each element (®;, ;) is a defeater of its predecessor

(i1, Piz1)-

Not any sequence of arguments is an acceptable sequence; Black and Hunter
use the conditions for argumentation lines are defined in DeLP:

e It must be finite,
e The set of all odd and the set of all even elements must be consistent,

e Arguments cannot be used to attack an attacker of an argument that
contains that argument as a subargument (irrespective of the distance in
the argumentation line),

e No two blocking defeaters may follow each other in the argumentation line.

Definition 11. An argumentation line A is an acceptable argumentation
line if it adheres to the following conditions:

e it is finite

. U Py | ¥ L and U Py, 1| ¥ L where L = the length of the
0<i<i 1<i<L
argumentation line.

o V(D o) € Aﬂ<<1>j,gbj> € A in the same line where j < k and (®y, ¢y) is
a subargument of (®;, ¢;)

o V(®;,¢;) € A if (®;,¢;) is a blocking defeater of (®;_1,¢;_1) then (®;,1,
¢i+1) must be a proper defeater of (®;, ;) or (P, 1, dit1) ¢ A.

Combining all the argumentation lines starting with the same argument, pro-
duces a branching tree of arguments: the dialectical tree. Every path from the
root to a leaf is an argumentation line, ending with leaves containing defeaters
which are not defeated by any arguments. The dialectical tree is a tree repre-
senting all the defeat relations of a set of arguments.

Definition 12. Let ¥ be a, possibly inconsistent, belief base and Ag be an

argument such that Ay € A(¥). A dialectical tree for Ay constructed from
U, denoted T'(Ap, V), is defined as follows.

14

1. The root of the tree is labelled with Ag.

2. Let N be a node of the tree labelled A4, and let A; = [Ay,..., A,] be the
sequence of labels on the path from the root to node N. Let arguments
By, Bsg, ..., By be all the defeaters for A,, that can be formed from W.
For each defeater B; (1 < j < k), if the argumentation line A} = [Aq, ...,
A,, Bj] is an acceptable argumentation line, then the node N has a child
N; that is labelled B;.

If there is no defeater for A,, or there is no B; such that A} is acceptable,
then N is a leaf node.

Two dialectical trees are equal if the set of argumentation lines that can be
read from the first tree is identical to the set of argumentation lines that can be
read from the second tree.

In our running example, this would only be [A3, A4, Al]; the branch starting
with A2 does not exist here, since A2 is weaker than Al.

A3

|
A4

|
Al

We can examine the results when Al and A2 would have had an identical pref-
erence level. Had Al and A2 had the same preference level, they would have
been able to keep repeating their attacks on each other, defeating one another
every time, if the conditions for an acceptable argumentation line were not ob-
served. A2 would have been able to defeat A3, and Al could not be used to
defend against it, for it would conflict with the third and fourth restriction on
acceptable argumentation lines.

A3

/\
A2 A4
|
Al

The tree can now be used to determine whether the claim made by the argu-
ment at the root of the tree is warranted or not. In order to determine this,
leaf nodes in the tree are considered undefeated, and any node defeated by an
undefeated node is considered to be defeated. If all the defeaters of a node are
defeated, the node is undefeated. The status of the root node of the tree will
then determine whether the argument on the root node is warranted.

15

Definition 13. The marked dialectical tree MT(Aj, ¥) is created from
the dialectical tree T'(Ag, ¥) as follows":

e A node N of T(Ap, ¥) is marked undefeated when VN’ if N’ is a child of
N then N’ has been marked as defeated.

e The marking starts at the leaf nodes, which are automatically undefeated
as they have no children, and move upwards until the root has been
marked.

The status of an argument is determined by using a marked dialectical tree:
Status(A,¥) = U iff the root of the tree MT (A, V) is undefeated, otherwise,
Status(A,¥) = D. An argument with status U is warranted.

For example, if the tree from the running example was to be marked, it would

look like this: A3 U
\

A4 D
\

Al U

And the altered example would look like this:
A3 D

N
A2 U A4 D

|
A1 U

2.2 Dialogues

A dialogue consists of alternate moves between the players. Unlike many di-
alogue systems, Black and Hunter’s inquiry dialogues use few possible moves.
The player can either open or close warrant and argument inquiry dialogues,
though a warrant inquiry dialogue can only be opened in the first move of a
dialogue, or assert an argument.

Definition 14. A move is a tuple (Agent, Act, Content), such that
Sender({Agent, Act, Content)) = Agent and Sender({Agent, Act, Content)) €
T.

Moves in Black and Hunter’s system for inquiry are defined as

"In the original article, both the marked and normal dialectical tree are denoted T'(Ag, ¥)

16

Move ‘ Format

open | (x,open, dialogue(d,~))
assert | (x,assert, (P, ¢))
close | (z,close,dialogue(8,))
el
and
where 0 =wi and v € §*
or

0 =aiand vy € R*
The set of moves is defined as M.

An open move determines the type of dialogue and the topic to discuss. If the
dialogue is chosen to be a warrant inquiry dialogue, the topic must be a defeasi-
ble fact; if it is chosen to be an argument inquiry dialogue, the topic must be a
defeasible rule. Similarly, a close move contains the same information, in order
to determine which dialogue or subdialogue the player proposes to close . Only
once all players propose to close a dialogue, with no other moves in between, a
so-called matched close , will it be terminated.®

Definition 15. A dialogue in Black and Hunter’s system is denoted as
D! where r,t € Ny and r < t. D! is a sequence of moves m,.,...,m;. The
first move of a dialogue D!, move m, = (z,open, dialogue(6,7)), is always an
open move, as this move determines both the type (T'ype(DL) = #) and topic
(Topic(Dt) =) of the dialogue, as defined in Definition 14. The participants
of the dialogue are the elements of the set of players Z defined in Definition 1°.

The set of all dialogues is defined as D.

A player may also embed an argument inquiry dialogue inside an argument or
warrant inquiry dialogue, if no dialogue with the same topic has been opened
previously and its topic may have influence on the current dialogue. It is not
possible to embed warrant inquiry dialogues inside either warrant or argument
inquiry dialogues.

Since 7 marks the start move of a dialogue D!, a subdialogue can easily be
defined within a dialogue:

8The original definition contained turntaking restrictions here and in the well-formed di-
alogue definitions. These have been omitted here; having the turntaking restriction inside
the dialogue definition would require it to be redefined to be used in later chapters where
turntaking is a separate function.

9The original article defines this as {1,2}, which is omitted here. Whenever the original
definitions refer to player 1 and player 2, a reference to the elements of the set Z is used
instead.

17

Mg, ..., ...,mt_l,mt]

Mgy .o, ME—1, Mg

I<i<j<k<t-1
Db =[ma, oo e My My M1y - -y M1,]
my = (Py, open, dialogue(61, 1)) m; = (P, open, dialogue(0;, ¢;))
m; = (P;, open, dialogue(0;, ¢;)) my—1 = (Py_1, close, dialogue(0;, ¢;))
my, = (Pg, close, dialogue(8;, ¢;)) mi_1 = (P;_1, close, dialogue(6;, ¢;))
my = (P, close, dialogue(0;, ¢;))

Figure 3: Schematic of nested dialogues from [3]. From the original caption: D}
is a top level dialogue that has not yet terminated. D} is a sub-dialogue of D}
that terminates at ¢. D is a sub-dialogue of both D} and D}, that terminates at
k. D} is a top-dialogue of D!. D} is a top-dialogue of Df. Dt is a top-dialogue
of Df. D¥ is a top-dialogue of Df.

Definition 16. A dialogue DY is a subdialogue of D! if r < u < v <t
and DY is a subsequence of D!. Conversely, a top-level dialogue is a dialogue
which is not a subdialogue of anything: D is a top-level dialogue if r = 1. The
set of top-level dialogues is denoted Di,p. D} is a top-dialogue of D! iff they
are equal or D! is a sub-dialogue of D}. A dialogue D! extends D iff the first
n moves in D! are the sequence DY, and DY is n moves long.

An illustration to elaborate on the sub-dialogue structure from [3] is shown in
Figure 3.

Next, close moves and termination are discussed.
Definition 17. Given a dialogue D! and participants Z = {1, 2}, a matched

close for D! occurs at ¢t when m,, = (1, close, dialogue(Type(D), Topic(DL)))
and m, = (2, close, dialogue(Type(DL), Topic(DL))) have been moved, where

18

u,v<tandu=v—lorv=u—1landu=torv=t.

Definition 18. A dialogue D! terminates at ¢ if
e m; is a matched close

e there was no earlier termination: ADY where 7 = u and DY terminates at
v and D} extends DY

e VDU if DY is a subdialogue of D! then 3D¥ such that D? terminates at
w, is a subdialogue of D! and either DY extends DY or vice versa.

Definition 19. Let D! be a dialogue. The current dialogue is given by
Current(D}) such that Current(D.) = Df. (1 <r <y <t) where the following
conditions hold:

1. my, = (z,open,dialogue(f,v)) for some z € Z, some v € B* and some
0 € {wi,ai},
2. VD1 if D}l is a sub-dialogue of D} ,
then 3D[2 s.t. either D2 extends D! or
D}1 extends D;2,
and D!2 is a sub-dialogue of D,
and D}? terminates at to,

3. AD! st. DL extends DI and Df? terminates at t3.

If the above conditions do not hold then Current(D}) = null.

The commitments of the player are stored in a commitment store. Paradoxi-
cally, this is not a set of beliefs that the agents has publicly committed to and
cannot deviate from, as in most dialogue games. It is rather a set of the rules
and facts asserted by this agent, and may be conflicting, as noted on page 12.
Players may use the commitment store of the other players to augment their
belief base, using beliefs from both without restriction when constructing an
argument.

Definition 20. The commitment store is denoted C'S, C B, where x € 7
is an agent and ¢ € Nj is a point in time. The content of the commitment store
is updated with the following function:

oSt =
0 iff t =0
CSITtud iff my = (x,assert, (®, ¢))
CSi—t otherwise.

19

2.2.1 Argument inquiry dialogue

Arguments inquiry dialogues are used to jointly construct arguments for a par-
ticular claim, by using the beliefs of each agent when it is applicable. A query
store contains the literals that support the claim, and the agents will try to find
support for these literals as well. They do not, however, consider counterargu-
ments (nor counter-counterarguments, and so on).

Definition 21. The query store of an argument inquiry dialogue D! is
defined as
QS’F =
{ag,...,an, B} iff m, = (z,open, dialogue(ai,a; A . ..an — (3))
otherwise.

The query store of the current dialogue is determined by the function cQS(D?) =
QS, iff Current(D!) = D:,.

A protocol is proposed for players in the dialogue. They may propose to close
dialogues at any time they wish, though this needs a matched close to actually
cause the dialogue to terminate. They may assert any argument they like as
long as the conclusion of the argument is in the query store, ensuring that ar-
guments are relevant to the dialogue, and it has not been asserted before.

They may also open an argument inquiry dialogue inside another inquiry dia-
logue. This allows them to focus the discussion on a specific argument, using an
argument inquiry dialogue’s query store to jointly provide arguments to support
the content of the argument that is the topic of the dialogue. These cannot be
opened multiple times for the same claim.

Definition 22. The argument inquiry protocol II,; is a function of
type Iy : Diop — P(M). Given a top-level dialogue D} where 1 < ¢t and
Topic(Current(D?})) = =, the definition for I1,;(D}) = [1255¢ (D) UILE" (DY)U
{(z, close, dialogue(ai, 7))}, such that

aseert(Dh) =
(x,assert, (P, d)) | ¢ € cQS(DL) and
x # Sender(m;) and
v where
l<wv<tand
m, = (2, assert, (P, ¢))
and 2’ €7

HOpB’I'L(Di) —

at

20

(z, open, dialogue(ai,v)) | y=P1 A...\ By, — « and

a € cQS(DY}) and

x # Sender(m;) and

v where
1<v<tand
m, = (2, open, dialogue(ai,v))
and ' €

Note that turntaking is defined in the protocol.

A dialogue is a well-formed argument inquiry dialogue if it meets the following
criteria: it must start with an open that opens an argument inquiry dialogue, it
must terminate at some point (though this may be at a point later than t) and
every move made in the dialogue must be legal according to the protocol.

Definition 23. Dialogue D! is a well-formed argument inquiry dialogue
iff

e m, = (x,open, dialogue(ai,v)) where x € 7 and v € R*
e Jv such that ¢t < v, DY extends D! and D! terminates at v

e Vs where r < s < t and D! extends D?

if

[D! is a top-dialogue of D and
Dy is a top-dialogue of D; and
D! extends D3

tIlen

Sender(ms), Sender(msy1) € Z,

Sender(ms) # Sender(ms41) and

| st € Mau(D5)

If the dialogue is well-formed, the argument inquiry outcome is defined as

Outcome,;(Dt) = {(®,¢) € A(|] CSL)|6 € @S, }

z€L

To summarise, the outcome of an argument inquiry dialogue is a set of argu-
ments with the topic of the dialogue as conclusion, which is only available if the
dialogue is well-formed. A protocol was defined to give the possible moves in a
certain situation.

2.2.2 Warrant inquiry dialogue

Unlike the argument inquiry dialogue, a warrant inquiry dialogue aims to con-
sider relevant counterarguments in order to determine the validity of a claim. It
does this by constructing a dialectical tree of the topic of the dialogue, with the
first asserted argument at the root of the tree. If, at the end of the dialogue,

21

the root is undefeated by its children, the claim is said to be warranted.

Any belief asserted by the agents must be relevant: it must make some change
to the dialectical tree; if the argument does not change the tree at all, there
is no reason for it to be stated. As in argument inquiry dialogues, agents may
propose to close the dialogue at any time.

Definition 24. The warrant inquiry protocol II,,; is a function of type
i : Diop — P(M). Given a top-level dialogue D! where 1 < ¢ and Topic(D})
= 7, the definition for IL,;(D}) = I%5(DY) U IE"(DY) U {(z, close,
dialogue (wi,¥))} (z €), such that

A RootArg(D?}) function is defined as:
RootArg(D}) =
(T,~) if s such that
[1<s<tand
ms = (x,assert, (I',v)) and
Topic(D}) =~ and z €
and Pu, I” such that
[1 <u<sand
my, = (&', assert, (I, v)) and
el
null otherwise

11337 (D}) =
(x,assert, (®,¢)) | © # Sender(m;) and
[either RootArg(D!) = null and ¢ =~y or

T (RootArg(D?Y), U CStu @)

=
”
T(RootArg(D?), U CSY)
s
and
[#u such that
l<u<tand
my, = (x', assert, (P, P))
and 2’ €7

(D)) =

22

(x, open, dialogue(ai,v1)) | © # Sender(m;) and
Y1=p1A...NA By — aand
[either RootArg(DY) = null

and aw =y or

3w C | CS! such that ¥| ~ —a
L =
and Fu such that
[1 <wu<tand

m.,, = {a', open, dialogue(ai, 1))
| and 2’ €7

Note that turntaking is defined in the protocol.

A dialogue D! is a well-formed warrant inquiry dialogue if it meets the follow-
ing criteria: it must start with an open move, it must terminate at some point
(though this may be at a point later than ¢) and every move made in the dia-
logue must be legal according to the protocol.

Definition 25. A dialogue D! is a well-formed warrant inquiry dialogue
iff

e m, = (x,open, dialogue(wi,y)) where x € 7 and vy € §*
e Jv such that ¢t < v, DY extends D% and D! terminates at v

e Vs where r < s < t and D! extends D?
if
[D! is a top-dialogue of D% and
D7 is a top-dialogue of D; and
| Dj extends D}
then
Sender(ms), Sender(ms11) € Z,
Sender(ms) # Sender(mgi1)
and mgq1 € (D7) where 0 = Type(Current(Dy5))

If the dialogue is well-formed, the warrant inquiry outcome is defined as

Outcome,,;(DL) =
RootArg(D?) iff Status(RootArg(D?), U CSY)y=U
el
0 iff RootArg(D!) = null or
Status(Root Arg(D!), U CSY)y=D
€L

2.2.3 Agent strategies

While the above agent protocols constrain which moves the agents are allowed
to make during the dialogue, they do not define agent behaviour. The choices

23

agents make during a dialogue are defined in a strategy. The strategy deter-
ministically defines which move to make at any given moment. An exhaustive
strategy is given, which ensures that all moves which might have an influence
on the outcome of the dialogue are made.

The strategy is as follows: if there are legal assert moves that can be made,
make one of these moves, as selected by a deterministic function. Otherwise,
if there are open moves that can be made, make one of those, also selected by
a deterministic function. If neither open moves or assert moves can be made,
make a move to close the dialogue.

Definition 26. The exhaustive strategy is defined as follows:

Pick,(Asserts,(D%)) iff Asserts, (DY) # 0
Pick,(Opens,(D?)) iff Asserts,(D%) =0 and Opens,(D}) # 0
(x, close, dialogue(,~)) iff Asserts,(D}) =0 and Opens,(D}) =0
0 = Type(Current(DY))
v = Topic(Current(D}))
Asserts, (DY) =
where { (x,assert, (P, ¢)) € (DY) | (®,¢) € A(U CStux®) }
ISYAV
Opens,(D}) =
{ (z,o0pen,dialogue(ai,)) € y(D}) | (v, L) € £ }

Definition 27. Given a © = {(z,assert, (P1,¢1)), ... {(x,assert, (Pr, o))},
Pick, is defined as Pick,(©) = (x,assert, (D;, ¢;)) where 1 < i < k and Vj
where 1 < j <k and i # j, A((®i, i) <tex A((P;, ;). Similarly, given a © of
k open moves Pick, is defined as Pick,(0) = (x, open, dialogue(0;, ¢;)) where
1<i<FkandVjwherel<j<kandi#j, u(od:) < pu(e;).

The p and X functions are explained using a quote from the original article:

Let us assume that B* is composed of a finite number Z of atoms.
Let us also assume that there is a registration function u over these
atoms: so, for a literal a, pu(a) returns a unique single digit number
base Z (this number is only like an id number and can be arbitrarily
assigned). For arule ag A...Aay, — apg1, plaa Ao Aay — @pg)
is an n + 1 digit number of the form p(aq)...u(o,)u(,41). This
gives a unique base Z number for each formula in B* and allows an
agent to select a single open move using the natural ordering relation
< over base Z numbers. [from:[2]]

The function A returns a unique tuple of base Z numbers for each
argument. We use a standard lexicographical comparison, denoted

24

=lex, of these tuples of numbers to select a move to make (i.e. the
one whose content is the maximum element in the lexicographical
ordering). [from:[2]]

25

2.3 Examples

Both examples are taken from [3]. The example argument inquiry dialogue in
Table 1 is based on the belief bases:

H S {(e—d 1), (b— e 1), (a— b,1)}
52 {(a,1),(5,1)}

t CSt my CS;: QS

(1, open, dialogue(ai,c — d)) QS1 ={c,d}
2 (2, close, dialogue(ai, ¢ — d))
3 (1, open, dialogue(ai, b — c)) QS3 ={b,c}
4 (2, assert, ({(b,1)},b)) (b,1)
5 (b,1) (1,assert, ({(b,1),(b — ¢,1)},¢))

(b—¢1)
6 (2, close, dialogue(ai, b — c))
7 (1, open, dialogue(ai,a — b)) QS7 = {a,b}
8 (2,assert, ({(a,1)},a)) (a,1)
9 (a,1) (1,assert, ({(a,1), (a — b,1)},b))
(a— b 1)
10 (2, close, dialogue(ai,a — b))
11 (1, close, dialogue(ai,a — b))
12 (2, close, dialogue(ai,b — c))
13 (1, close, dialogue(ai, b — c))
14 (2, close, dialogue(ai,c — d))
15 | (¢ —d,1) | (1,assert, {{(a,1),(a — b, 1),
(b—c1),(c—d,1)},d))

16 (2, close, dialogue(ai, ¢ — d))
17 (1, close, dialogue(ai, ¢ — d))

Table 1: Argument inquiry dialogue example.

Move 15 contains the result of the argument inquiry dialogue displayed above:

({(a,1),(a — b,1),(b = ¢,1),(c — d,1)},d).

26

The example warrant inquiry dialogue in Table 2 is based on the belief bases:

22

|

{(a,4), (a — b,4),(c,3), (c — —b,3), (e, 2)}
{(d,3),(d — —a,3),(~d, 1), (e = —d,2), (—e, 1)}

t CSt my CS} QS;
1 (1, open, dialogue(wi, b))
2 (2, close, dialogue(wi, b))
3 (a,4) (1,assert, ({(a,4), (a — b,4)},b))

(a—b,4)
4 (2,assert, ({(d, 3), (d — —a,3)}, ~a)) (d,3)

(d — —a,3)

5 (c,3) (1, assert, ({(¢,3), (c — —b,3)}, b))

(¢ — —b,3)
6 (2,assert, ({(—d, 1)}, ~d)) (—d, 1)
7 (1, open, dialogue(ai,a — b)) QS7 ={a,b}
8 (2, close, dialogue(ai,a — b))
9 (1, close, dialogue(ai,a — b))
10 (2, open, dialogue(ai,d — —a)) QS10 = {d,a}
11 (1, close, dialogue(ai,d — —a))
12 (2, close, dialogue(ai,d — —a))
13 (1, open, dialogue(ai,c — —b)) QS13 = {c, b}
14 (2, close, dialogue(ai, ¢ — —b))
15 (1, close, dialogue(ai, ¢ — —b))
16 (2, open, dialogue(ai,e — —d)) QS16 = {e,~d}
17 (e,2) (1, assert, ({(e, 2)}, e))
18 (2, assert, ({(e,2), (e = —d,2)}, ~d)) (e,2)

(e — —d,2)

19 (1, close, dialogue(ai,e — —d))
20 (2, close, dialogue(ai,e — —d))
21 (1, close, dialogue(wi, b))
22 (2,assert, ({(—e, 1)}, —e)) (—e, 1)
22 (1, close, dialogue(wi, b))
23 (2, close, dialogue(wi, b))

Table 2: Warrant inquiry dialogue example.

The outcome of the warrant inquiry dialogue displayed above is @), as the argu-
ment supporting b in move 3 is ultimately defeated by the argument made in

27

move 5.

2.4 Privacy issue

One might wonder why a system for inquiry dialogues might be used, when
the pooling of knowledge seems to be the most simple solution. The difference
is in the sharing of information. As it is highly unlikely that all information
from both agents is required to determine the validity of a topic, it seems more
efficient not to share all information; this is especially useful if the knowledge
base can contain sensitive information, such as a medical file.

Inquiry dialogues allow agents to only share the knowledge which is relevant, al-
lowing an agent to keep certain information to himself unless a dialogue partner
makes it clear this information is required to further the dialogue. Aside from
being a possible performance enhancement '© , this allows the agent to maintain
a measure of privacy in applications when such privacy is highly valued.

2.5 Soundness and completeness

Black and Hunter have defined the benchmark for soundness and completeness
for their system for inquiry dialogues as the union of the beliefs of the agents.
They have proven that using the exhaustive search strategy on the finite belief
base of the agents results in a use of all the relevant beliefs of that agent, and
could not possibly continue forever.

Soundness of argument inquiry dialogues can be proven from the fact that the
commitment store is a subset of the union of the belief bases of the agents, and
the fact that the set of arguments created from a subset, is itself a subset of the
set of arguments created from the whole set. Completeness follows from the fact
that no open or assert moves are available when the dialogue ends, according to
the definition of the exhaustive search.

Soundness and completeness of warrant inquiry dialogues is shown by proving
that the resulting dialectical tree is equal to the tree generated by the union of
the agent’s belief bases. From the fact that everything that will have an influence
on the tree will be stated by the exhaustive search strategy, and a proof that
shows that every path from leaf to root in the dialogue’s dialectical tree is also
in the union’s dialectical tree, it follows that the dialectical tree generated from
the dialogue and the tree generated from the union of the agent’s belief bases
are equal.

10For example, if & percent of the agent’s information is required for deduction at most x
percent is used; less if some of the data is present in both knowledge bases and therefore not
requested by the dialogue partner. Merging two knowledge bases with possibly conflicting,
complex or inconsistent information, with 100 — z percent irrelevant data, can be very time-
consuming, and may spend time on the merging of data that is not relevant for the dialogue.

28

2.6 Summary

This chapter has elaborated on the system for inquiry dialogues defined by Black
and Hunter in [2] and the exhaustive strategy provided with it. The formal
definitions have been given and some of the properties have been given as well.
Soundness and completeness, for example, has been informally described and
not formally defined.

29

3 Prakken’s framework for persuasion dialogues

In [8] Prakken describes a framework for persuasion dialogue games, in order to
make implicit design principles more visible and to investigate how to reconcile
the static nature of nonmonotonic logic with the dynamic nature of dialogue
games. Additionally, Prakken intended to build the framework to allow several
types of protocols to be formulated, giving certain characteristics that must be
common for the dialogue games.

3.1 Definition of the framework

Definition 28. A dialogue system, or dialogue system for argumentation,
is a pair (£, D), the first parameter £ being a logic for defeasible argumentation,
and D a dialogue system proper.

Definition 29. A logic for defeasible argumentation £ is a tuple (L, R,
Args, —) containing the topic language L., the set R of inference rules over
L;, the set Args which contains AND-trees where every node € L; and every
AND-link is an instantiation of a rule € R, and finally a binary relation — of
defeat defined on Args. An argument A is a tree where prem(A) is the set of
leaves and conc(A) is the root of the tree.

Given a set of arguments A, several properties can be defined. An argumen-
tation theory T where f C L; within £ is a pair (A, —/4) consisting of a
set of arguments in Args with only nodes from F' and the — relation restricted
to A x A. If all arguments in Tr have a finite number of defeaters, t4 is called
finitary.

For any set A C Args the set of all formulae that are a premise of an argument
is A is called the information base I(A). The closure of a set of arguments
A C Args is the argumentation theory Ty 4.

An argument B extends an argument A if conc(B) € prem(A)!t. Arguments
are concatenated using the ® operator, and concatenation of A and B, denoted
as B ® A, is only possible if B extends A. The assumption is made that the
defeat relation in £ satisfies the property: if A defeats B then VC, D if C extends
A and D extends B then C'® A defeats D ® B.

Definition 30. A dialogue system proper D is defined as a tuple (L.,
Pp,, C) containing the communication language L., Pp,, the protocol for L.
and a set C' containing the effective rules of locutions, which specify the effect
of locutions on commitments.

The communication language is a set of locutions. Every element p(c) of
the set is a performative € Perf with either a subset of the topic language L,
as argument or a member of Args. Two binary relations are defined on L., the

1So r since s extends p since g, 7. Prakken chooses to list an argument with a single infer-
ence as conclusion since premises.

30

attacking reply relation is defined with R, while the surrendering reply relation
is defined with R,. Both are irreflexive and a locution cannot be the subject in
both an attacking and a surrendering relation (i.e. it is either an attacking reply,
or it is a surrendering reply, but cannot be both) and if it is a surrendering reply
to some other locution, it cannot be attacked:

e Ya,b,cif (a,b) € R, then (a,c) ¢ R,
e Va,b,cif (a,b) € Ry then (c,a) ¢ R,

The function att is defined to assign to every pair (a,b) € Ry one or more
attacking counterparts (¢,b) € R,.

Definition 31. The set M of moves is defined as N x {P,O} x L2 x N,
containing the identifier id(m), the player pl(m), the speech act s(m) and the
target t(m) of the move.

The set of dialogues M= is the set of all sequences of moves € M such that
for every sequence my, ..., m;,... the first move has no target (t(m1) = 0), the
ith element has identifier ¢ (id(m;) = ¢) and Vi if ¢ > 1 then 3j where 1 < j <
and t(m;) = j. The set of finite sequences that satisfy these properties is called
M<>,

A sequence my, ..., m; that is part of a dialogue d = my, ..., my, ... is denoted
by d;, so dy denotes the empty dialogue. The continuation of d with move m is
denoted d, m.

Definition 32. A turntaking function is defined as T': M <> — P({P,0}),
where T'(0) = {P}.

Definition 33. A protocol on M is a set Pp,, C M <% such that if d € Pp,
then Vi,d; € Pp,. A function Pr : M<* — P(M) is defined to produce the
moves that are allowed after a dialogue d as

unde fined ifd ¢ Pp,
Pr(d) = { {m|d,m € Pp,} othe%wise.
The domain for Pr, denoted dom(Pr) is the set of legal finite dialogues.
Note the difference between Pr(d) returning () and undefined, the first means
that the dialogue is legal, but it is terminated as there are no more possible
moves; the second means that the given dialogue is not legal.

A few conditions must be met by any protocol; it must obey the turntaking
function, it must obey the relations of attack and surrender in the protocol
language, no player can reply to its own moves, the same reply may not be used
twice to attack the same move and a surrendering reply cannot be undone.
Definition 34. Vd,m if m € Pr(d) then

Ry pl(m) € T(d)

Ry if d # dg and m # my then s(m) is a reply to s(¢(m)) according to L.

31

Rs ¥Ym' € d if t(m) = m/' then pl(m) # pl(m’)
Ry ¥Ym! € d if t(m) = t(m') then s(m) # s(m')

Rs vm' € dif t(m) = t(m’) and s(m') is a surrendering reply, then m is not an
attacking counterpart of m’

Definition 35. Lastly, a commitment function is defined as C' : M=% x
{P,0} — P(L;). Cyi(p) denotes the commitments a player has made in a
dialogue d, so Cy(p) = 0.

3.2 Elements of the framework

Prakken intended for the framework to impose a common structure on (a selec-
tion of) dialogue games; an explicit reply structure, where moves either attack or
surrender to a move that was made at some earlier point in the dialogue. Since
many dialogue games already implicitly use this structure, Prakken hoped to
make the structure explicit with the framework.

Dialogues that are less focused on conflict of opinion, and more on investigation
or deliberation might not want this rigid reply structure and may choose to
allow a more loose structure for turntaking. Of course, variations should be
allowed; for example, a dialogue system might wish to have a different set of
locutions, a different argument-based logic, or allow for backtracking, multiple
replies or postponing of replies.

3.2.1 Dialectical graph

During a dialogue, players implicitly build a structure of arguments and coun-
terarguments for and against the initial claim. This structure can be represented
in several ways. First, it can be represented as a linear order, structured only
by the time or turn the moves were made.

Another way to represent the dialogue is to structure the dialogue by the reply
relation between moves. This results in a tree of moves and countermoves, the
dialogue tree. The dialogue tree contains all the moves against the initial claim
(the root of the tree) and all its attackers, and their attackers, etc.

32

Og: why g Og: why r Og: —psince u

Pr:qsince & | | Pz rsince t » Pg: —u since v

A third way to structure the dialogue is to create a dialectical graph of the con-
tent of the arguments moved in the dialogue, combining arguments that were
made over several moves or replied implicitly to several moves.

D
/

3.2.2 Moves

Below is an example of a possible set of speech acts for the framework.

33

Acts Attacks Surrenders

claim @ why concede p
why ¢ argue A (conc(A) =) | retract @
argue A why ¢ (¢ € prem(A)) | concede o

argue B (B defeats A) | (¢ € prem(A) or p = conc(A))

concede @
retract

The above moves have the following effect on the commitment store: claim and
concede append the fact to the commitment store, argue adds both the premises
and conclusion of the argument to the commitment store, retract removes an
argument from the commitment store and why does not influence the commit-
ment store.

The proponent of the initial claim starts with a unique move, introducing the
initial claim to the dialogue. A restriction to concessions is defined, to ensure
concessions are made as a reply to the move that introduced the conceded
argument, not the last move to have used the conceded argument.

3.2.3 Attack and defeat

The framework considers three possible ways to attack an argument (for example

¢ since 1):

1. premise-attack
countering the premise of the argument (example: —))

2. undercutting
arguing that the rule used in the argument is incorrect or incomplete
(example: not(¢ since 1))

3. rebuttal
countering the conclusion of the argument with a contradictory argument
(example: —¢ since)

Not all systems need use the three possible ways of attacking; many systems
opt to ignore or disallow one or even two of these types of attack.

3.3 Termination and outcome

Ideally, dialogues end when the player taking turn has run out of legal moves to
make. This is not always the case; some dialogue types may allow information
to come from other sources and may allow belief bases to evolve during the
dialogue as new information is gathered during the dialogue. It may also be
possible to endlessly challenge arguments using the why move.

34

It is reasonable to assume that many dialogues will not end in the ideal fashion,
but end with an external agreement to end the dialogue, or a decision to termi-
nate the dialogue. Therefore, the outcome must be determined on a per move
basis, determining who would be the winner were the dialogue to end.

3.3.1 Dialogical status and outcome of dialogue

As can be expected, only the arguments which have not been successfully de-
feated must be considered to determine the dialogical status of the initial claim.
The dialogical status of moves, whether they are in or out, is determined for
a move m by determining whether every move that attacks move m has been
successfully replied to. If there are attacking moves that have not been replied
to, or have been replied to with a surrendering move, move m is out.

Prakken uses the in and out states of moves to determine whether the initial
claim is substantiated or disproved by the dialogue. The losing player has the
’burden to attack’, and failing to attack will at some point lose him the dialogue.

3.4 Soundness and fairness

Soundness is defined as the fact that a dialogue that concludes supporting a
claim, must mean that the information that is agreed upon in the dialogue
must also imply the claim. The reverse, if the agreed upon information implies
a certain conclusion about the initial claim of the dialogue, this conclusion must
be the result of the dialogue, is called fairness.

Both of these properties require a property called logical completion. If this
property is present in the dialogue system, soundness and fairness can be proven
from it.

3.4.1 Logical completion

A dialogue that has terminated may conclude a different status for the initial
claim than would be concluded from the information that is agreed upon in the
dialogue. This can happen when the dialogue has ended before all the logical
counterarguments which can be constructed from the commitment store for ei-
ther the initial claim, or any supporting or counterclaim have been given, or
when several premises stated during the dialogue can be combined to conclude
something that was not explicitly stated in the dialogue.

Compare the following trees, adapted from Prakken’s article. Ending with the
first tree results in a different conclusion from the dialogue than ending with
the second tree. The second is logically complete, while the first did not include
04, and as such was not complete. Note that O4 must have been constructed
from the arguments that have been stated by the agents in this dialogue.

35

pP1t
|
02~

|
pP3*

P1~

PN
02- 04*

|
p3+

Soundness and fairness can only be proven for dialogues that are logically com-
plete; only when all minimal arguments that defeat an argument in the dialogue
have been used against that argument, can soundness and fairness be concluded.

3.5 Relevance

A relevant move is a move that has an influence on the outcome of the dialogue;
in other words, if a move does not achieve a change in dialogical status for the
initial claim, it is not relevant. There is, of course, an exception: a surren-
der move, such as concede or retract, would not change the dialogical status of
the initial claim, but it is relevant if the move it surrenders to is a relevant target.

Definition 36. An attacking move in a dialogue d is relevant iff it changes
the dialogical status of d’s initial move. A surrendering move is relevant iff its
attacking counterparts are relevant.

Relevance 2 can be a useful condition to have for a dialogue system, it limits
the players from cluttering the dialogue with longwinded and irrelevant argu-
mentation.

An illustrative example adapted from [8] shows the difference:

120r strong relevance, when compared to the later mentioned weak relevance.

36

P‘f

05
/\
Py P
/\

Oy Of [Os,
P‘?F

)

While Og ; might influence a few nodes of the dialectical tree, its influence does
not extend as high as the root node, so the argument is irrelevant. On the other
hand, Og 2 would affect the root node, so it is relevant.

3.6 Summary

This chapter has shown the basics of Prakken’s framework. The formal def-
inition has been given and some of the properties Prakken examines in his
framework have been elaborated.

37

4 Comparing Black and Hunter’s inquiry dia-
logues with Prakken’s framework

Any dialogue system can be adapted to fit Prakken’s framework (or the frame-
work adapted to the fit the system); some properties may need to be changed
to achieve the reconciliation of differences, but it can be adapted to a system.
However, the important question is not so much whether it is possible, but how
and at what cost.

Which properties of a system are lost when adapting to the framework? How
important are these properties to the fundamental idea of the system to be
adapted to the framework? In order to determine the successfulness of the
adaptation to the framework, it is necessary to define what is fundamental to
the system, and how the adaptation influences those fundamental properties.

This chapter examines which properties are fundamental to the concept of an
inquiry dialogue system defined by Black and Hunter. It also examines what
similarities and differences can be determined between the system for inquiry
dialogues and the framework as defined by Prakken. Finally, it determines to
what extent it is possible to reconcile the differences between Prakken’s frame-
work and the system for inquiry dialogues.

4.1 Fundamental properties of inquiry dialogues

The most important properties of Black and Hunter’s inquiry dialogue system
are also the ones that differentiate it from other dialogue systems. These prop-
erties may be shared by some dialogue systems, but are uncommon in others,
and the list of fundamental properties might be considered a compact definition
of Black and Hunter’s inquiry dialogue system as variation on a hypothetical
basic dialogue system'3. Fundamental properties are essential to the system; if
one were to remove, for example, the cooperative nature from inquiry dialogues,
the very concept of inquiry dialogue will be severely, if not completely, crippled.

Properties that should be considered fundamental are the cooperative nature
of inquiry dialogues, the possibility of keeping information private unless there
is cause to share it, and the fact that agents can (and must) slip in and out of
roles as the dialogue progresses.

Other properties that the system for inquiry dialogues has that might be consid-
ered fundamental properties, but which can be influenced by agent’s strategies
(as they are built upon the provided exhaustive strategy), are properties such
as the predetermined result of a dialogue, which allows statements about the
soundness and completeness of dialogues using the union of belief bases as a

13i.e. a dialogue system that only has the basic properties that (almost) every dialogue

system has.

38

benchmark.

Additionally, the simplicity of the possible moves, with only open , close and
assert moves available, could be an essential property that might be preserved
in some way.

Also a notable difference, and another fundamental property of Black and
Hunter’s system, is the fact that there is no notion of targeting for moves, while
Prakken’s framework requires every move to have a target. In reconciling this
difference, either all moves from Black and Hunter’s system have to be altered
in some way to allow them to have targets, or Prakken’s framework has to be
altered to allow the absence of a target.

So, to summarize, the fundamental properties of Black and Hunter’s inquiry
dialogue system are:

1. the cooperative nature of the dialogue

2. the distinction between agents and agent roles because of the absence of
role definitions, allowing for agents to make moves both supporting and
opposing the topic of the dialogue

3. the predetermined (reliable) result of dialogues when the exhaustive strat-
egy is used, ensuring soundness and completeness

4. soundness and completeness can be benchmarked on the belief base when
the exhaustive strategy is used

5. the simplicity of available moves

6. moves have no target, the dialectical tree determines the targeting

4.2 Differences

Of the fundamental properties, the fourth can be considered to be available in
a somewhat similar fashion in Prakken’s framework. The others are the major
differences that must be overcome to make a successful adaptation that allows
the systems for inquiry dialogues and Prakken’s framework to be compatible.

Finally, there is a difference in determining the outcome of the dialogue. The
system for inquiry dialogues generates a dialectical tree with all the arguments
that have been made for and against the topic, and determine the outcome based
on this tree. Prakken’s framework, however, creates a dialogue tree of moves
that have been made, and a dialectical graph with all the arguments, and bases
the outcome on the dialogue tree. This is because Prakken’s framework has
several types of moves that have an influence on the status of moves, but should
not be in the dialectical graph. The graph is used to make the arguments con-
structed using argument extension visible.

39

4.2.1 Minor Differences

The framework allows lies and holding back information that is relevant, while
the agents using the exhaustive strategy in Black and Hunter’s system for in-
quiry dialogues share anything relevant. As such, this should still be considered
a minor difference; it may require some adaptation, but it should not be a large
or problematic adaptation.

Another minor difference is the query store that is available in Black and
Hunter’s system for inquiry dialogues. It contains the literals that need to be
proven in order to construct an argument for the topic of the dialogue. Prakken’s
framework has no comparable feature. Since the same information can be easily
obtained from the dialogue itself, this is not considered to be important.

4.3 Mapping

The following table contains a mapping of definitions; for many definition from
Prakken there is a similar idea in Black and Hunter’s system. The overlap or
compatible definition have been marked with a v/, the problematic definition
or the ones that require some modification to be compatible have been marked
with a .

Prakken’s framework Black & Hunter’s system

Ly v S*and S

set of defeasible facts and
set of defeasible facts with
preference level

topic language
contains defeasible facts

R ' R*and R

set of defeasible rules and
set of defeasible rules with
preference level

inference rules
contains strict rules

set of all arguments
contains all possible argu-
ments that can be built from

set of all arguments
generated from a given belief

L; and R base
Argument A v' Argument A
AND-tree where defea.&.ble derivation .
a minimal set of premises
nodes € Ly leading to a claim
links € R cading o a cla

facts € § and rules € R
Continued on Next Page. ..

40

Prakken’s framework

Black & Hunter’s system

prem(A) v’ Support(A)
conc(A) v Claim(A)
— v/ attack relation
binary defeat relation on with definition of defeat
Args based on preference level
L. I table of moves
communication language
set of elements p(c) Hove Format
where p is a performative € o 'j’”, :""”_ f”’rdi‘g[’Z:’;(g’ i
Pelrf close (x:c'lm'e, ;iia,l’ague(é?,)
and ¢ C L; or ¢ € Args
Perf v/ implicit in the table of moves
. table of moves: open , close
set of performatives p
assert
R, ! attack relation on ¢
not part of the system, no
binary attacking reply rela- attack relation is defined on
tion on L. performatives / moves, only
on arguments
Ry v
bm.ary surrendering reply re- not part of the system
lation on L.
Dialogue d,, = mq, ..., My ' Dialogue DL =m,.,...,my
sequence of n moves with the
following conditions: sequence of moves from index
every move must have a tar- r to index t
get except my no targets have been defined
moves may not target them- for moves
selves
M, M=% and M<*> v MandD

set of moves, set of possibly
infinite dialogues and set of

finite dialogues
Continued on Next Page. ..

41

the set of moves and the set
of dialogues

Prakken’s framework

Black & Hunter’s system

move
4-tuple (id, pl, s,t)
id(m) = number in the se-

quence of a dialogue

pl(m) = player who moved
s(m) = speech act

t(m) = target of the move

move
(x, performative, content)
not saved in move, but in di-
alogue
rxel
performative and content
not defined

Turntaking function
Dialogue — {P,0}

defined in protocol
the system alternates play-

ers, if the last move was 1,
the next move is by 2 and
vice versa.

{p,0}
player roles (Proponent, Op-
ponent) bound to players

T
set of players (there are no
specific roles)

Pp, and function Pr v 1L (DL) or I, (DY)
set, of dlalqgues that are valid depending on which dia-
and function that produces . .
. logue is currently active in
the allowed moves for a given . . .
. the given dialogue (given by
dialogue Type(Current(DL)))
must obey turntaking rules r
C v CS

commitment function
determines the effect moves
have on the commitment
store

CS! defined in Definition 20

®

argument concatenation

not defined
the modification of argu-
ments is not allowed, the
original argument remains
and a new one is created that
has the addition arguments
as subarguments

Outcome
outcome is based on the dia-
logue tree of moves
Continued on Next Page. ..

42

outcome is based on the di-
alectical tree of arguments

Prakken’s framework Black & Hunter’s system

Table 3: Mapping definitions in Prakken’s framework and Black
and Hunter’s system for inquiry dialogues

The next sections consider the items marked with an exclamation mark in the
table above, and some that are marked with a v, but require some additional
elaboration.

4.3.1 Arguments

To show that arguments in Prakken’s framework and arguments in Black and
Hunter’s system for inquiry dialogues are interoperable, two functions are pro-
vided to convert Prakken’s AND-trees to Black and Hunter’s defeasible deriva-
tions, and vice versa.

Definition 37. The function argumentToInquiry, of type
argumentTolnquiry : Args — A(S* UR*), converts an argument in the form
of an AND-tree to an argument as defined by Black and Hunter, by returning
a postorder traversal of the nodes of the AND-tree.

argumentTolnquiry(A) =
[E = postorder traversal of A
| =last element in F, then remove [from F
for every element e in
if the node marked with e has children in A

replace e with a rule [/\ — e]

children

return (F, [)

Definition 38. The function argumentToFramework, which is of type
argumentToFramework : A(S* UR*) — Args, converts an argument in the
form of a defeasible derivation to an AND-tree as follows.

argumentToFramework({(®, ¢)) =

43

[Create an AND-tree AN DT with root node ¢
while(® # ()
[for every node N € ANDT with label A

V¥ where the rule | /\ | - A€ ®
heEW
add nodes for all ¢p € ¥, each a child of N

and @ =0\ < | A\ w| =)

Ppew

Note that if the preference level needs to be preserved, the label for the nodes
can be modified to contain the preference level as well.

For example, given the argument ({(a,1),(b,1),(a Ab— ¢, 1),(c — d,1), (e, 1),
(dhe— f,1)}, f), the following AND-tree would be produced:
f

PN
e

Y
Y o—=
T

Postorder traversal of the tree returns the original sequence: {a,b, c,d, e, f}.
Note that if the order of the children was deemed irrelevant, the same tree
could be produced with the d and e node switched, however postorder traversal
would provide a different, though correct, defeasible derivation: {e,a,b,c,d, f}

f
PN
e d
\
c
PN
a b

With these functions defined, there can be no doubt that arguments in Prakken’s
framework and those in Black and Hunter’s system are compatible.

4.3.2 Argument concatenation ®

Prakken has defined a rule for the consistency of ®: if A defeats B then YC, D
if C extends A and D extend B then C' ® A defeats D ® B.

44

In Black and Hunter’s system, this rule does not hold, it is true that if pLevel(A4) >
pLevel(B) then pLevel(A ® B) > pLevel(B); this means that argument con-
catenation may weaken an argument, sol4:

if A defeats B then VC, D if C extends A and D extend B then C' ® A defeats
D ® B only if pLevel(C) < pLevel(A) or pLevel(C) < pLevel(D).

However, Black and Hunter’s system does not give players the ability to modify
arguments that have been made. Any combined argument is a new argument
in a new move, it does not replace the previous argument.

Agents in Prakken’s framework build an argument like this, for example'®:
a

\
why (a)

b since a

possible subtree

Obviously, a provided explanation responding to an attacker needs to strengthen,
and never weaken the original move.

Black and Hunter use a dialectical tree that is constantly generated from all the
arguments that have been asserted by the agents. If an argument is asserted
that is weaker than the argument it might have intended to attack, it simply
does not appear in the dialectical tree. If a move combines two previously
asserted arguments into a new argument, this is simply a new move, and a new
argument.

4.4 Optional modifications after conversion
4.4.1 The underlying logic

One thing to consider when looking at a dialogue system is its underlying logic.
Black and Hunter’s system is based on DeLP'6, and while Prakken’s framework
allows (theoretically) most logics for nonmonotonic reasoning, it is worth con-
sidering whether this underlying logic should be preserved, and at what cost. As
most of the options for underlying logics are functionally comparable, it might
be worth it to change the underlying logic for the inquiry framework to be of a

14\While Black and Hunter have no definition for extending arguments, Prakken’s definition
is hypothetically applied to the arguments here to show that it would not be consistent if it
were in Black and Hunter’s system.

15Note that Prakken enforces no moves in the framework, and the why used here is just an
example.

16Which, as you may remember, is Garca and Simari’s Defeasible Logic Programming [5]

45

more reliable kind.

The use of DeLLP can be considered to be somewhat problematic. The list of
restrictions for the argument line has been shown to be somewhat problematic
at times, allowing structures that should not be allowed. A small example of
this would be the following argumentation line:
{(a, ?)}7 a)
<{(b’ 1)7 (b _>‘ —a, 1)}’ —\CL>
{({(=b,1)},-b)

Note that ({(b,1),(b — —a,1)},—a) and ({(=b,1)},—b) are blocking defeaters
of each other, according to the definition on page 13. Sceptically, this argu-
mentation line should not be acceptable; if —b is true, then a is as well, but
if b is true, which is just as likely, then a is not true. However, according to
the restrictions, this argumentation line is acceptable, so a would be considered
true (or warranted).

Since none of the fundamental properties require any specific property of DeL.P,
any semantics is likely a viable choice; there are no restrictions in the systems
except for the structure of arguments. Black and Hunter also mentions this
in [3] at the end of chapter 7, stating that it is possible to “adapt our system
to use the semantics and defeat relation of any argumentation system where
the acceptability of an argument depends on the argument graph constructed
around it”.

However, integrating specific semantics into the adapted systems is not consid-
ered. A textual explanation of the process is given, and an intuition of the ease
of this additional modification is provided. Furthermore, no reference is made of
a specific underlying logic, so that future work may attempt to use the systems
with any underlying logic they please.

4.4.2 Expanding for more than two agents using role switching

Given that agents in Black and Hunter’s inquiry dialogue system are not bound
to the role of either proponent or opponent, it is easy to expand the system to
more than 2 agents. Other dialogue systems lock the agents in their role, and
as the number of roles is hard to increase, they might have a lot of difficulty
increasing the number of agents.

In Black and Hunter’s system, however, one can easily add any umber of agents,
and each takes up whichever of the two roles is appropriate to use when they
have a contribution to make. This will be shown during the construction of the
adapted systems.

46

4.5 Summary

In this chapter the definitions of the two systems have been compared and a
measure of difference has been established. It has become clear that while there
are some fundamental differences, there are also many similarities. From the
difference that were established in this chapter, the next chapters will define two
systems that either adapt Black and Hunter’s system to Prakken’s framework,
or adapt Prakken’s framework to Black and Hunter’s system.

47

5 Adapted version of Black and Hunter’s system
for inquiry dialogues that is compatible with
Prakken’s framework

This chapter examines the changes needed to Black and Hunter’s system for in-
quiry dialogues in order to adapt it to Prakken’s framework, without changing
anything that was formally defined in Prakken’s framework definition. Func-
tions that were not explicitly defined, such as the definition for the turntaking
function are given where necessary.

This provides an instantiation of Prakken’s framework that is capable of for-
mulating the same dialogues as can be formulated with Black and Hunter’s
system.'” As such, any statement made about Prakken’s framework is applica-
ble to the adapted system for inquiry dialogues.

First, the core of the framework is repeated with some notational alterations.
After that, the necessary adaptions to Black and Hunter’s system and the func-
tions that have to be defined in Prakken’s framework are given. Next, a function
is defined to provide the outcome of a dialogue and a method to create the di-
alectical graph is described. After that, some example dialogues are displayed,
along with with dialogue trees, to clarify the changes. Then, functions are
provided to translate a dialogue from Black and Hunter’s system for inquiry
dialogues to the adapted system and Black and Hunter’s exhaustive strategy is
given for the adapted system. Finally, the fundamental properties are evaluated
for the adapted system.

5.1 Framework definition

The basic definition of Prakken’s framework is given below. Note that the follow-
ing definitions are given to make explicit some notational changes for Prakken’s
framework'® and to avoid conflicts of notation. A clear table of notation for
both Black and Hunter’s and Prakken’s article can be found on page 40. Note
that comments made about notation on page 11 apply here as well.

Occasionally, the notation [/\ ¢} — 1) is used as a more readable notation of

/\ ¢| =Y orggA...A¢, — 1. The aim is to allow statements to be made
ped
about the premises of the rules, using ¢ to denote any of the premises.

Additionally, a dialogue d; as denoted in Prakken’s framework or DI as de-
noted in Black and Hunter’s system is a sequence of moves. Since the moves

17Note that for this comparison, the equality is not defined on the basis of moves, but on
the basis of content and outcome.
18For the original notation and definition, see Definition 28 through 30

48

are denoted with natural numbers, and natural numbers are well-ordered, these
dialogues are now assumed to be well-ordered sets of moves, allowing notation
such as m; € D! and m; € d;.

Definition 39. An inquiry dialogue system is a pair £, DSP where
L is a logic for defeasible argumentation
DSP is an inquiry dialogue system proper

Definition 40. A logic for defeasible argumentation £ is a 4-tuple
L, R, Args, = where
L is the logical language, consisting of

defeasible facts S* and

defeasible rules R*

R is a set of inference rules
Args is a set of arguments
= is a defeat relation between arguments

The set of arguments and the defeat relation between arguments are defined
later under argumentation theory. The set R is defined to contain a single rule,
the modus ponens.

LoN...ANLj = Ly,
L(]/\.../\Lj
Ly,

Note that Prakken’s framework requires the ‘defeasible modus ponens’ rule to
support the constructing of arguments from its logical language L;, as the set
of strict rules which build arguments in Prakken’s framework is defined to be
empty by Black and Hunter. In [9] Prakken encountered a similar situation and
used this rule to solve it'?.

Using this rule, arguments from Black and Hunter of the form ({(a,1)(a —
b,1)},b), which only contain beliefs, can be constructed in Prakken’s framework
in the form b since (a, 1)(a — b, 1), implicitly using the above modus ponens for
defeasible rules. Definitions 37 and 38 explained this in more detail.

Definition 41. An inquiry dialogue system proper DSP is a 3-tuple
(L, II, C) where

L. is a communication language

II is a protocol

C is a commitment store update function

19Note that the original rule in [9] contains elements ~ Ly, which means that there is no
evidence for L. However, as this is not used in Black and Hunter’s defeasible rules, it has
been excluded here. Also, Prakken used = for defeasible rules, while we use —; this has been
replaced accordingly.

49

Several changes are necessary to adapt Black and Hunter’s system for inquiry di-
alogue to Prakken’s framework. Each change is described and explained below.
Some examples are provided in between, however the most complete examples
will be shown after the explanations, in Table 6 through 9 and their accompa-
nying dialogue trees.

5.2 Argumentation theory

For every literal or rule in L. (¢ € §* and [/\ (b} — 1) € R*), there can be tuple

of that element with a preference level p, (¢, p) or ({/\ (b} — w,p). The set of

these literals with preference level is defined as S, the set of rules with prefer-
ence level is defined as R. Arguments contain these tuples and the premises of
an argument derive the conclusion using the modus ponens rule defined above.
Note that the function that gives the pLevel of an argument was defined in
Definition 7.

The set of arguments Args is defined as in Black and Hunter’s system, as all
the arguments that can be constructed from all the beliefs (defeasible facts and
defeasible rules with preference level).

Definition 42. The set of arguments is defined as:
Args = A(SUR)

The = relation, which is the defeat relation between arguments, is derived
from the definition of the defeat relation between arguments given by Black and
Hunter.

Definition 43. The defeat relation between arguments is a set of tuples
of arguments, using the attack defined in Definition 8.

= (defeat relation between arguments) =
(A,B) | A,B,C € Args
and A attacks B at subargument C
and pLevel(A) < pLevel(C)

5.2.1 Roles, players and agents

Players in Black and Hunter’s system for inquiry dialogues do not have roles,
while players in Prakken’s framework are tied to the specific roles. However, this
is not a problem for the adaption: we use the term role for Prakken’s players
(the set {P,0}), and player for Black and Hunter’s players (the set Z). Players
may make a move as they see fit, and the role is assigned to the move accord-
ingly (i.e. if a move targets a move made by P, it is made by O, and vice versa).

50

First, the roles in Prakken’s framework require a slight change of notation in
order to have a notation for players. Where the notation for Proponent was P,
and a move by Proponent denoted P;q (with id being the id of the move), it is
changed to P(z) where x € 7 and a move using the Proponent role is denoted
P,4(x). The notation for Opponent is adapted in a similar fashion.

Definition 44. The set of roles is defined as:
Roles =
{ Pla)|zeT }
U
{ O@)|zecT }

Note that this is not a change that has any influence on Prakken’s framework,
it is merely notation in order to see which agent has made a move.

5.3 Communication language

This section must start with a comment on notation, to avoid confusion. Black
and Hunter define a move as (Agent, Act, Content), yet also use the term for
what Prakken would refer to as a speech act. From now on, Prakken’s definition
is used and these are referred to separately.

Prakken’s framework does not explicitly support sub-dialogues. However, these
sub-dialogues are a sequence of moves that are related to each other because the
dialogue definition enforces their connection. In Prakken’s framework, a similar
effect can be achieved by using the targets of moves.

In order to achieve this, the open speech act for argument inquiry dialogues
has to be redefined. Since argument inquiry dialogues were already required
to discuss a topic related to the topic of the dialogue, the move containing the
open speech act could itself be given a target, but it would never be defeated
successfully?°.

The open speech act that is defined in Black and Hunter’s system must be split
into parts, and each is somewhat different from the original open speech act.
The open speech act for argument inquiry dialogues is replaced with a propose
speech act, which is followed by several moves with a query speech act. For
example:

propose(a — b, p)

AN

query(a — b,p) query(a,p)

20Unless one considers close moves as attackers of open moves, but that would give a single
close move the power to close a dialogue

o1

propose(a Ab — ¢,p)

query(a Nb — ¢,p) query(a,p) query(b,p)

Note that p denotes the preference level of the nearest asserted argument higher
in the tree (in a direct line to the root), or oo if no such argument exists. The
open speech act for warrant inquiry dialogues is still an open speech act, but it
does not accept the type of dialogue, and must also be followed by a move with
a query speech act. For example:

open(a)

query(a, oo)

Neither the propose nor the open add its content to the role’s commitment store,
but it is considered an successful attacker for the move it targets.

The query speech act is similar to the why speech act that can be found in many
persuasion dialogue systems, except it can only attack moves that contain an
open or propose move, not an assert move; the move is used to simulate that the
players are not stating that the proposed rule or fact is true, they are proposing
that the inquiry considers it. For the open speech act, which only accepts a
single fact from S*, the query move that follows invites inquiry about this fact
(and attacks the move with the open speech act, which ensures that nothing is
warranted when there are no arguments for it). For propose speech acts, where
Black and Hunter’s system would create a query store?!, a query move must
be moved for each literal in the query store, except for the consequent of the
rule. Instead of a query move for the consequent of the rule, for which there
may already be a query move, a query for the entire rule is moved.

An example dialogue tree to show the moves in action:

21 As defined in Definition 21

92

open(a)
\
query(a, o)

propose(b — a, 00)

query(b — a, 00) query(b, 00)

\ \
a since (b,2), (b — a,2) b since (b,2)

|
propose(c — —b, 2)

query(c — —b,2) query(c,2)
\ \

—b since (¢, 1), (¢ — —=b,1) ¢ since (¢, 1)

This tree is equivalent to a dialogue from Black and Hunter’s system for inquiry
dialogues of the form:

(1, open, dialogue(wi, a))

2, open, dialogue(ai, b — a))

1,assert, ({(b,2)},b))

2, assert, ({(b,2), (b — a,2)}

1, close dzalogue(az’ b— a))

2, close, dialogue(ai, b — a))

1, open, dialogue(at, ¢ — —b))

L assert, ({(c, 1)},)

2,assert, ({(¢, 1), (¢ — —b,1)}, b))

1, close dzalogue(az ¢ — b))
,close, dialogue(ai,c — —b))

(1, close, dialogue(wi, a))

(1, close, dialogue(wi, a))

(
(1,
(2,
(1,
(2,
(
(
(
(1,
(2

Note that a move that contains a propose speech act, while it semantically
opens an argument inquiry dialogue, either inside another dialogue or as the
first move of a dialogue, does not actually force any restrictions on the dialogue,
as sub-dialogues do in Black and Hunter’s system. Moves that are made later
in the dialogue can target any other move (except for the querying moves which

93

must follow immediately), and as such, there is no closing move for these ‘sub-
dialogues’. However, moves that directly target the querying moves that target
the move with the propose speech act can all be considered to be inside the
sub-dialogue.

Prakken’s framework does not allow a move to behave as a close move does in
Black and Hunter’s system for inquiry dialogues. The close move only has an
effect if it is moved by all the players and it closes a dialogue and locks its topic.
Since neither is allowed in Prakken’s framework, the close move is omitted. The
section above has shown that close moves is no longer required for sub-dialogues,
so the behaviour that has to be replaced is the option for agents to skip a turn
by moving a close move, and the matched close to signify the end of the dialogue.

The matched close functionality is not reproducible in Prakken’s framework.
However, since Prakken defines a way to evaluate the dialogue after every turn,
the matched close to end a dialogue is not required. The second behaviour, to
allow players to skip turns, will be dealt with when the turntaking function is
defined.

With the open speech act adapted for Prakken’s framework, the only speech
act left is the assert speech act. This only needs a slight modification to assert
the type of arguments that Prakken defined, but with preference levels. As
it has been shown that the arguments from Prakken and Black and Hunter’s
systems are interchangeable, this is in fact a notational change. Note that the
difference between the propose and assert acts is that the assert speech act
provides an argument which has a preference level, as defined by Black and
Hunter, containing facts and rules with preference levels. The propose contains
a rule and a preference level as separate parameter. Also, assert acts are the
only acts that affect the commitment store.

5.3.1 Definition of performatives and communication language

Based on the above, a set of performatives and the corresponding communica-
tion language L. can be defined.

Definition 45. The performatives are
Perf =
assert for asserting arguments,
propose to open an argument inquiry,
open to open a warrant inquiry, and
query follows propose and open to signify inquiry
Assert is unary, the others are binary, with restrictions on the parameters to be
defined in the communication language.

Based on these performatives, the communication language can be defined.

o4

Definition 46. The communication language is defined as the set
b= { assert(c) | ce Args }

- { propose(c,p) | ce R*,pe N1 U{x} }

U{ open(c,p) ‘ ceS* ,peNU{oco} }

U{ query(c,p) | c € S*UR*, pe Ny U{oo} }

5.3.2 Attack and surrender relations

The new speech acts have specific attack relations. The definition of the attack
relation below shows the attack relations between speech acts.

] Attacking speech act \ Type of speech act it can attack ‘

open(¢) | open cannot attack any moves
assert(A) | assert(A’), if A defeats A’,
query(¢,p) if A is an argument
for ¢ that can defeat an argument
with pLevel p

query (l/\d)J — 1/),]3) if Ais an
argument for ¢ that can defeat an
argument with pLevel p, and the
queried rule is in the premises of

A

propose (V\ ng — w,p) assert(A) if A is an argument for
-1 that has pLevel p
query (¥, p)

query(, p) pmpose(No| — w,p)>
open(¢), where p = oo

query (No| — w,p) propose (No| — w,p>
Table 4: Table of moves adapted from Black and Hunter’s move to
fit Prakken’s framework. The first column contains the attacker,
the second the object of the attack. Note that it is not true that
any speech act in the left column will attack every speech act from
the right column that is in the dialogue when moved, this table
merely provides the possible speech acts that can be attacked.

Some examples are show below to clarify these definitions. In addition to the
informal definition in the table, the sets R, and Ry are formally defined below
the examples.

%)

First, a propose speech act and an open speech act can be attacked only by
query speech acts.
propose(a — b, p)

TN

query(a — b,p) query(a,p)

0pe7‘1(a)

query(a, oo)

Second, an example of an assert attacked by a propose speech act.
b since (¢, 1), (¢ — b,1)

\
propose(d — —¢, p)

query(d — —c,p) query(d, p)

Definition 47. The attack relation between speech acts is defined as
R, =
(assert(A),assert(A’)) | (A, A) e= }

(assert(A), query(p,p))

pLevel(A) <p
and ¢ = conc(A)

assert), query ({/\ (;5} — z/gp)) pLevel(A) <p
and ¢ = conc(A)

and [N\ 6] = v.p'

€ prem(A)

- = conc(A)
and p = pLevel(A)

Y =9
and p = p’

(query ®,p'), propose ([/\ fﬂ - %p)) ‘ p=7p }

(query(¢,00),open(¢')) | ¢ = ¢}

propose (| \é| = w.p) . query(v'.p"))

{
{ propose /\cﬁ} — 1, p) ,assert(A))
{
{
{
K

(e ([Ae] = 8) roene ([o] =) | =0 }

96

Note that V(z,y) € Ra, x € L. and y € L.

Since there are no speech acts that can be surrendered to, the set R, can be
empty.

Definition 48. The surrender relation between speech acts is defined
as Ry =10

5.4 Moves

Moves are defined as they are in Prakken’s framework, but with the altered role
notation. Extra functions provide information about the moves more easily, for
example to get the player without the role.

Definition 49. A move m;, is defined as a 4-tuple (id, role(player), perf
(content), target) where

id number in the sequence of a dialogue € Ny
role(player) role(player) € Roles

perf (content) perf(content) € L.

target target of the move € Ny
The following functions return the various elements of a move.
id(miq) =1id
pl(miq) = role(player)
_ Role(pl(m;q)) =role
o Player(pl(miq)) = player
s(miq) = perf(content)
Performative(s(m;q)) = perf
Content(s(miq)) = content
t(myq) = target

5.5 Commitment function

The commitment function needs to be defined for the adapted system. Recall
that in Black and Hunter’s system, only assert moves influence the commitment
store. The same is true in this adaption, so the C' function is defined accordingly.

Definition 50. The commitment function is defined as C : M= x
{P,0} — P(L). Cyq(p) denotes the commitments a role has made in a dialogue
d

Ca,(p) =
0 iff d; = 0(t = 0)
Cq,_,(p)UD iff s(my) = assert(¢ since) and
p = Role(pl(my))
Cq,_,(p) otherwise.

o7

where d; = mq ... mg.

5.6 Turntaking

Turntaking is one of the functions where the distinction between roles and play-
ers is quite important. The turntaking function specifically talks about what we
have defined as roles. Therefore, by allowing both P and O to move at any time
through the turntaking function, players get the freedom to move as whatever
role is convenient.

Definition 51. The turntaking function is defined as T : M<® —
P{P,0}).

_ {P(x)} iff d =0, where P(x) € Roles
T(d) = { {P(z),0(x)} otherwise, where P(z),O(x) € Roles

Note that this function forces the first move to be made by P. If this was not a
restriction made by Prakken’s framework, the open speech act could have been
omitted, allowing a warrant inquiry dialogue to be opened with a query move
made by O.

5.7 Protocol

Some moves are tightly connected, and as such, limitations on these moves are
required; these are noted in the protocol additions. First, Prakken’s protocol
conditions are repeated below for convenience. Note that while the notation of
the protocol Pp, was changed to II above, the protocol function Pr will still be
used.

Definition 34, repeated??. Vd,m if m € Pr(d) then

Ry pl(m) € T(d)

Ry if d # dy and m # m; then s(m) is a reply to s(t(m)) according to L.

Rs Vm/ € d if t(m) = m/ then pl(m) # pl(m’)

Ry Vm/ € d if t(m) = t(m’) then s(m) # s(m/)

Rs Vm' € d if t(m) = t(m') and s(m') is a surrendering reply, then m is not an

attacking counterpart of m’

Several protocol rules have to be added to Prakken’s rules. First, only query
moves may follow an open or propose move, until all required query moves have

22Qriginally defined on page 31

98

been made. Second, the open may only be moved as the first move of a dialogue.

There are also several problems which stem from the differences between the
approaches of Black and Hunter’s system and Prakken’s framework. For ex-
ample, an asserted argument in Black and Hunter’s system can effectively be
a counterargument to several arguments, where Prakken’s framework explicitly
allows only a single target per move. An example dialogue tree will clarify this
problem. Note that for assert moves, only the content of the speech act is show
in the dialogue tree.
a since (b, 3), (b — a),3)

propose(c — —b, 3) propose(c — —a, 3)

query(c — —b,3) query(c,3) query(c — —a,3) query(c,3)
\

¢ since (¢, 1)

In order to defeat both query(c, 3) moves, assert(c since (¢, 1)) has to be moved
twice. Prakken’s framework allows the repetition of moves as long as they do
not attack the same move (see R4), and the adaption to Black and Hunter’s in-
quiry dialogue system has to do the same to allow the outcome of the dialogue
above to be the same as it would be in Black and Hunter’s system.

This change provides a new problem. While dialogues in Black and Hunter’s ar-
ticle assert arguments without opening an argument inquiry dialogue, these are
often followed by an argument inquiry dialogue to inquire about other possible
arguments that can be constructed. Allowing repetition results in the following
dialogue tree:

99

query(a,2)

a since (¢, 1), (¢ — a,1) propose(c — a,3)
possible subtree /\
query(c — a, 3) query(c,3)

a since (¢, 1), (¢ — a,1)

possible subtree

Because the assert(a since (¢, 1), (¢ — a,1)) has been moved before the propose
(¢ — a,3) was moved, it is also moved inside the argument inquiry dialogue
opened with the propose(c — a,3). This would cause an entire part of the
dialogue to be repeated, while having no effect whatsoever on the status of the
nodes above the propose(c — a,3) move.

The status of assert(a since (¢, 1), (¢ — a,1)) and propose(c — a,3) both influ-
ence the status of query(a,2), but the status of assert(a since (¢, 1), (¢ — a, 1))
also determines the status of propose(c — a,3). If assert(a since (¢, 1), (¢ —
a,1)) is undefeated, propose(c — a,3) has no influence higher in the tree, if
assert(a since (¢, 1), (c — a, 1)) is defeated, propose(c — a,3) is as well.

In order to avoid this, a condition has to be added to the protocol for use of
the assert speech act: all of the facts in the premises of the asserted argument
must have been asserted earlier, if the premises of the argument contain a rule.
This condition ensures that all arguments are constructed properly through an
argument inquiry dialogue.

Since the propose moves are moved anyway, the worst consequence of this change
is that that number of moves increases, as compared to the original dialogue.
Compared to the tree above, however, where entire parts of the tree can end
up being repeated, the number of moves is certainly decreased. The same dia-
logues can be expressed, the moves are just shuffled around slightly (and split
into separate assert moves for their facts). This will be more clear when the
example dialogue on page 27 is converted on page 71.

To summarise, the following additions are made to the protocol rules:

Query moves Only query moves may follow an open or propose move, until all
required query moves have been made;** (Added as protocol rule Rg)

23Note that while these may be made by any player (but not any role!), it is assumed in

60

Open and propose The open move may only be moved as the first move of a
dialogue, and the first move of a dialogue may only be open or propose ;
(Added as protocol rule Ry)

Complete arguments All of the facts in the premises of an asserted argument
must have been asserted earlier, if the premises of the argument contain
a rule; (Added as protocol rule Rg)

The changes to the protocol are now formally defined.

Definition 52. The adapted inquiry dialogue system adds three protocol
rules to those of Prakken’s framework.

If m; € Pr(d) and d = mq ... m;_1, then:

R if Performative(s(my_1)) = propose
or Performative(s(m:—_1)) = open
then t(my) = my—1 and (s(my),s(mi—1)) € R,
else if
Performative(s(mi—1)) = query
and t(my_1) = my,
and n =number of unique literals in s(m,,)
and [n—(t—1)4+u] >0
then
t(mye) = my,
and (s(my), s(my)) € R,

R; if d = dy then Performative(s(m;)) = open or Performative(s(m;)) =
propose
and if Performative(s(m¢)) = open then d = dy
Rs if
s(my) = assert(A) and
Jre R* ,pe Ny
such that (r,p) € prem(A)
then
Vo € S*p' € Ny
if (¢,p") € prem(A)
then dm,, € d such that
s(my,) = assert(¢ since (¢, p))

the examples that the player moving the propose also moves the query acts. This is, however,
not a requirement.

61

A small example dialogue is provided below to elaborate on Rg and Ry.

RoleTyn (Player) Performative(Content) ‘ Target
Pi(1): propose(a ANb— c) 0
02(1): query(aNb—c) 1
O5(1): query(a) 1
O4(1) 1 query(b) 1

Table 5: An example for Rg

Ift =1, d = dy, so either open or propose can be moved. However, open can only
be moved as the first move. In the example above, propose was moved. If ¢t = 2,
s(mi—1) = propose, so m; must be a query move. If t = 4, s(my_1) = query.
The target of m;_1 is my and the number of literals in a A b — ¢ is 3. Since
n—(t—1)+wuw=3-3+4+1=1, which is larger than 0, another query move is
required. If t =5, n—(t —1)+u=3—4+41 =0, so no more query moves are
required. Note that since no two attackers can have the same speech act, this
automatically forces all correct query moves to be moved.

5.7.1 Well-formed dialogues

A well-formed dialogue is a dialogue that is correct according to the protocol,
in which every required query move has been moved (so if the last move was a
propose , the dialogue is not well-formed until all query moves are moved) and
in which speech acts are moved against every target that is available for the
speech acts.

Definition 53. A dialogue d is well-formed iff

e dell
e 3m; € Pr(d) such that Performative(s(m;)) = query

e ?m; € Pr(d) such that Im; € d where s(m;) = s(m;)

If a dialogue is not well-formed, the outcome can be unreliable. For example,
a dialogue that is not well-formed may have ended just after a propose move
was made. Because the query moves have not been moved, the propose move is
undefeated, allowing the propose move to defeat other moves.

If a speech act can be moved that is already present in the dialogue, there are
apparently more moves that it can reply to. In order for the outcome of the
dialogue to be correct given te information inside the dialogue, the speech act
must be used against every possible move it can target.

62

5.7.2 Protocol additions based on underlying logic

As discussed earlier, there are few properties that Black and Hunter’s system
for inquiry dialogues require of the underlying logic. It was shown that the sys-
tem they chose, DeLP, has some disadvantages when compared to other systems.

This adapted system does not specifically consider DeLLP or alternate underly-
ing logics, as any underlying logic can be used with the adapted system, simply
by adding protocol rules to match the logic. For example, if DelLP were to be
used, a protocol rule would be added to enforce acceptable argumentation lines.

It must be noted that an assumption that is made by Black and Hunter is that
defeasible rules consist of a conjunction of literals that imply a single literal. This
has to be reflected in any underlying logic, though it is possible that allowing
complex structures in place of the literals in Black and Hunter’s system will not
affect it at all.

5.8 QOutcome

As in Prakken’s framework, the status of the nodes in the dialogue tree deter-
mines whether the first move is defeated or undefeated, and as such determines
whether the topic of the dialogue is warranted. Technically the two inquiry
dialogue types in Black and Hunter’s system are still allowed, and each has a
different outcome; starting with an open move to create a warrant inquiry dia-
logue or starting with a propose move to create an argument inquiry dialogue.

In order to get an outcome on the basis of the last move that has been made, a
definition for the last relevant move is added.

Definition 54. The last relevant move lastRelevant in a dialogue d is
defined as:

lastRelevant(d) =
m; iff m; € d and
Performative(s(m;)) = assert and
the status of my € d # the status of my € d;
and }ﬂmj € d such that
Performative(s(m;)) = assert and
the status of m; € d # the status of m; € d;

Using relevant moves, it is possible to determine the last change to the status
of the topic of the dialogue; iff the last relevant move that was made changed
the status of the topic to defeated, it must have been moved by the Opponent.
The other way around, this mean that if a role made the last relevant move, it
is the winning role.

63

Definition 55. The winner of an inquiry dialogue d is defined as a func-
tion Winner : P(M) — {P,O}.

Winner(d) =

P iff Role(pl(lastRelevant(d))) = P
O otherwise.

Based on the winner, the outcome for the dialogue can be determined.
Definition 56. The outcome of an inquiry dialogue d is defined as a
function Outcome : P(M) — P(Args US*).

Outcome(d) = 0 iff Winner(d) = O, otherwise

{ | stm)=open(¢) }

U
s = ropose ([6] —v20)
dm;, m; such that
tim;) =1
t(mj) =1
wtm) — ey ([\6] = v.1)
s(m;) = assert(A)

Note that the separate parts of the outcome result represent the different types
of dialogues in Black and Hunter’s system. Warrant inquiry dialogues start
with an open move and return a set with the single literal that the dialogue
was opened with, if it is warranted. Argument inquiry dialogues start with a
propose move and return a set of all the arguments moved to support the topic
of the dialogue, if any could be found.

5.9 Dialectical tree and graph

Black and Hunter use a dialectical tree to determine the outcome of the dialogue.
Additionally, Prakken’s framework allows the construction of a dialectical graph.
Since these are somewhat similar constructs, this chapter will discuss both in
relation to the adapted system.

5.9.1 Dialectical tree

The dialectical tree is a tree of the arguments moved in an inquiry dialogue,
as defined in Definition 12. Since Black and Hunter’s system has only three
types of moves, of which only one contributes to the content of the dialogue, it
is relatively straightforward to build a dialectical tree in their system. In the
adapted system, only two alterations to the dialogue tree are required to build
a dialectical tree. The algorithm defined below can be used to construct the

64

dialectical tree from the dialogue tree.

65

Definition 57. Given a dialogue, the algorithm dialecticalTree is defined
below:

dialecticalTree(d) =

[First

[If Performative(s(m1)) = open

then drop m, and my from d

and Vm; € d where t(m;) = 2,t(m;) =0

then while

[3m; € d such that Performative(s(m;)) = propose

and Vmy, € d if Performative(s(m;)) = propose,
id(m;) > id(my)

do

[Vm.,,m, € d such that t(m,) = v and t(m,) = j

if s(m,) = query ({/\ (b} — w,p)

then

[add new node m,,

with Content(s(m,,)) as label

as a child of ¢t(m;)

and for all children m,, of the node m,,
make m,, a child of m,,

and
Ymy, mg, my € d

where t(mp) = ¢ and t(my) = r and t(m,) = j

if s(m.,) # query ([/\ ¢} — %p)
and Content(s(m,)) is an argument
that defeats Content(s(my,))

then t(mp) = id(my,)

and drop mg and m, from d

i and drop m;, m, and m, from d

First, the open move and the query move that replies to it are removed, if they
are present at all. Second, moving upwards from the leaves (since we’re moving
through propose moves from the highest to the lowest index), any argument
inquiry dialogue?®* is reduced to the argument moved within it. In the case that
it contains several arguments, these become separate replies. For example:

24Recall that this is a propose move, its attacking query moves and all moves that directly
attack the query moves, for example propose(b — a, 00)

query(b — a, c0) query(b, o)

\ \
a since (b,2), (b — a,2) b since (b,2)

66

open(a)

query(a, o)

propose(b — a, 00)

query(b — a, 00) query(b, 00)

\ \
a since (b,2), (b — a,2) b since (b,2)

|
propose(c — —b, 2)

query(c — —b,2) query(c,2)
\ \

—b since (¢, 1), (¢ — —=b,1) ¢ since (¢, 1)

This tree would first be reduced to the tree below by removing the open and its
query move.
propose(b — a, 00)

query(b — a, 00) query(b, 0o)

\ \
a since (b,2), (b — a,2) b since (b,2)

\
propose(c — —b, 2)

query(c — —b,2) query(c,2)
\ |

—b since (¢, 1), (¢ — —b,1) ¢ since (¢, 1)

Next, the argument inquiry about ¢ — —b is reduced to —b since (¢, 1), (¢ —
—b,1).

67

propose(b — a, 00)

TN

query(b — a, 00) query(b, 0o)

\ \
a since (b,2), (b — a,2) b since (b,2)

—b since (¢, 1), (¢ — —b, 1)

And finally the argument inquiry about b — a is reduced to a since (b, 2), (b —
a,2). Note that —b since (¢,1),(c — —b,1) is outside this argument inquiry
dialogue, therefore it now targets the argument that the propose was reduced
to.

a since (b,2), (b — a,2)

\
=b since (¢, 1), (¢ — —b, 1)

If one of the argument inquiry dialogues had contained a second assert move
using the rule of the propose move, it would split the tree (note that in the tree
below ¢ supports b):
open(—a)
\
query(—a, o)

—a since (—a, 5)

propose(b — a,5)

query(b — a,b) query(d,5)
a sincem (e.1), /\
(b—a,2) (e=b1),(0=a2)) Gince (b,2) propose(c — b, 5)
query(c — b,5) query(c,5)
b S(isz()i,)l% c sinC(‘a (c,1)

In this dialogue tree, the second argument inquiry dialogue is contained within
the first. Also, there are two moves replying to the query move with the rule.
When reduced fully, this give the dialectical tree in three steps:

-a since (—a,5)

propose(b — a,b)

/\

query(b — a,5) query(b, 5)
a sincem (c,1), /\
(b—a2) (e=b1),(b=a2) since (propose(c — b, 5)

/\

query(c — b,5) query(c,b)

b since (c,1), ¢ since (c, 1
(C*)b,l) (’)

-a since (—a,b)

propose(b — a,b)

/\

query(b — a,b) query(b, 5)
a sincem (e,1), i /}nce (c,1),
(b—a,2) (c—b,1),(b—a,2) b since (b,2) (c—b,1)

—a since (—a,b)

/\

a since (b,2), (b — a,2) a since (¢, 1),(c = b,1), (b — a,2)

5.9.2 Dialectical graph

The dialectical graph is a construct similar to the dialectical tree. In Prakken’s
framework, arguments are extended by replying to the why moves. This process
allows an argument to be extended at multiple positions, effectively creating

69

multiple arguments which are not clearly distinguishable. The dialectical graph
displays these different arguments as different nodes in the graph.

However, as was discussed earlier, Black and Hunter do not use argument ex-
tension as defined by Prakken; instead, arguments are built inside argument
inquiry dialogues. If an argument is provided with additional premises, this
is a new argument separate from the original argument. Thus, the distinction
between dialectical graph and dialectical tree becomes one of notation: Prakken
denotes arguments in the dialectical graph in the form 3.

Therefore, in order to create a dialectical graph from a dialogue tree, it must
first be converted to a dialectical tree, and then the arguments will be rewritten
to fit Prakken’s notation. The two dialectical trees created above is now con-
verted to dialectical graphs:

a since (b,2), (b — a,2)

\
=b since (¢, 1), (¢ — —b, 1)

becomes:
or

(b,2) (b—a,2)

o
‘ ;
> 5]

—a since (—a, 5)

a since (b,2), (b — a,2) a since (¢,1),(c = b,1),(b — a,2)

becomes:

70

:

(b,2) (b—a,2)

c,1) (¢—b,1) (b—a,2

a

5.10 Example dialogues

Three example dialogues from [3] are adapted according to the changes described
in this section. The first is a warrant inquiry dialogue from page 27.

RoleTyrn (Player) Performative(Content) Target
Pi(1): open(b) 0
02(1): query(b, o00) 1
Ps(1) propose(a — b, 00) 2
04(1) query(a — b, o) 3
O5(1) query(a, oo) 3
Ps(1) assert(a since (a,4)) 5
Pr(1) assert(b since (a,4), (a — b,4)) 4
0s5(2) propose(d — —a,4) 6
Py(2) query(d — —a,4) 8

Pio(2) + | query(d,4) 8
011(2) assert(d since (d, 3)) 10
012(2) : | assert(—a since (d, 3), (d — —a,3)) 9
Pi3(2) 1 assert(—d since (—d, 1)) 11
014(1) : | propose(c — —b,4) 7
Pi5(1) query(c — —b,4) 14
Pig(1) query(c,4) 14
017(1) assert(c since (¢, 3)) 16
O15(1) assert(—b since (c, 3), (¢ — —b, 3)) 15
Pi9(2) propose(e — —d, 3) 11
O20(2) query(e — —d, 3) 19
021(2) query(e,3) 19
Pss(1) assert(e since (e, 2)) 21
P3(2) assert(—d since (e, 2), (e — —d, 2)) 20
024(2) : assert(—e since (—e, 1)) 22

Table 6: An adapted warrant inquiry dialogue in Prakken’s frame-
work

71

To show the difference protocol rule Rg makes, below is part of the dialogue if
Rg was not in the protocol. It resembles the original warrant inquiry dialogue
example in [3] and on page 27 more closely.

Roleryyn (Player) Performative(Content) Target
Pi(1): open(b) 0
02(1): query(b, o) 1
P3(1): assert(b since (a,4), (a — b,4)) 2
04(2) - assert(—a since (d, 3), (d — —a, 3)) 3
O5(1) : assert(—b since (c,3), (¢ — b, 3)) 3
Ps(2) . assert(—d since (—d, 1)) 4
P;(1): |propose(a — b,0) 2
Os(1): | query(a — b, o0) 7
O9(1) : | query(a,oo) 7

010(2) : | propose(d — —a,4) 3
Pi1(2) : | query(d — —a,4) 10
Pi5(2): | query(d,4) 10

Table 7: An adapted warrant inquiry dialogue in Prakken’s frame-
work without using Rg in the protocol

The dialogue in Table 6 would produce the dialogue tree shown below.

72

O,
P,
/\
Oy Os
P, P,
0‘14 O‘s
Pn P
\ \ Py P1o
O1s O ‘12 0‘11
P Pis
O20 O21
P‘23 PLQ
O

For readability and formatting reasons, the dialogue tree with the content of
the moves?® has been split into its subtrees, which will follow below the tree.

25 As Prakken does with argue moves, for assert moves the performative is not shown, only
the argument.

73

P1:
open(b)
0‘2:
query(b,00)

3
propose(a—b,00)

04: 052

query(a—b,00) query(a,00)
Pr: Pg:

b since (a,4),(a—b,4) a since (a,4)
O14: Og:

propose(c——b,4) propose(d——a,4)
Prs: Pig: Py: Pio:
query(c——b,4) query(c,4) query(d——a,4) query(d,4)

O1s: O17: O12: O11:
=b since (¢,3),(c——b,3) ¢ since (c,3) —a since (d,3),(d——a,3)

. O11:
On ... d since (d,3)
Pig: Pi3:
propose(e——d,3) —d since (—d,1)

O20: O21:

query(e——d,3) query(e,3)
P232 ng:

—d since (e,2),(e—~d,2) e since (e,2)
024:

—e since (—e,1)

Next, the argument inquiry dialogue from page 26 is shown with the adaptions.
Note that the original example seems to be incomplete; two moves that are
possible at different stages in the dialogue but are not present in the original
example, they are present here as moves 14 and 16.

Roleryn (Player) Performative(Content) Target
Pi(1): propose(c — d,o0) 0
O5(1) : query(c — d, 00) 1
O5(1): query(c,o0) 1
Py(1): | propose(b — ¢, o) 3
O5(1): | query(b — ¢,00) 4
Os(1) : | query(b, 00) 4
P;(2): | assert(b since (b,1)) 6
Pg(1) : | assert(c since (b, 1), (b — ¢, 1)) 5
Py(1) : propose(a — b, 00) 6

O10(1) : query(a — b, 00) 9

O11(1) : query(a, 0o) 9

Pi5(2) : assert(a since (a,1)) 11

Py3(1) : assert(b since (a,1),(a — b,1)) 10

Pi4(2): |assert(csince (a,1), (a — b,1), 5
(b c.1))

Pi5(1): assert(d since (a,1), (a — b,1), 2
(b—c¢1), (c—d1))

Pis(2) : assert(d since (b, 1), (b — ¢, 1), (¢ — 2
4.1))

Table 8: An adapted argument inquiry dialogue in Prakken’s
framework

The above dialogue would produce the dialogue tree shown below.

P,
O O3
PN \
Pis Pis P,
Os O¢
PN P
Ps Puu p, Py
/\
O Oun
| |
P13 Pio

Again, for readability and formatting reasons, the dialogue tree with the content
of the moves has been split.

P1 (1):
propose(c—d,o0)

O2(1): O3(1):
query(c—d,o0) query(c,00)
/\ PL:
Pi5(1): Pi6(2):

d since (a,1),(a—b,1),(b—c,1),(c—d,1) d since (b,1),(b—c¢,1),(c—d,1)

Py...: Pa(1):

propose(b—c,00)

Os 1): Og (1):
query(b—c,00) query(b,00)

/\ P7m91
b since (b,1)
Ps(1): Pia(2):

¢ since (b,1),(b—c,1) ¢ since (a,1),(a—b,1),(b—c,1)

Py...: Po(1):

propose(a—b,00)

010(1)2 011(1):
query(a—b,00) query(a,00)
P13(1)Z P12(2):
b since (a,1),(a—b,1) a since (a,1)

Finally, the medical example discussed in [3] will be converted.

Xt ={(pain, 1), (nonCyc, 1), (preg,2)}
%2 = {(pain A nonCyc — mam, 3), (preg — —mam, 1)}

Roleryrn (Player) Performative(Content) Target
Pi(2): open(mam) 0
02(2): query(mam, co) 1
P3(2) : [propose(pain A nonCyc — mam, 2
)
04(2) : | query(pain A nonCyc — mam, 00) 3
O5(2) : | query(pain, o) 3

Continued on Next Page. ..

76

Roleryn (Player) Performative(Content) Target
06(2) : | query(nonCyc, o0) 3
P;(1): | assert(pain since (pain, 1)) 5
Ps(1): | assert(nonCyc since (nonCyc, 1)) 6
Py(2) : | assert(mam since (pain, 1), 4

(nonCyc,1), (pain A nonCyc —

mam, 3))
010(2) propose(preg — —mam, 3) 9
Pi1(2) . | query(preg — —mam, 3) 10
Pu() | query(preg,3) 10
O13(1) : | assert(preg since (preg,2)) 12
014(2) assert(—mam since (preg, 2), 11

(preg — —mam, 1))

Table 9: An example from the medical domain, adapted to fit in
Prakken’s framework

The above dialogue would produce the dialogue tree shown below.

Py
0,
P,
/N
(O] Os Og
P, P Py
O‘10
P(\Pw
0‘14 0‘13

Again, for readability and formatting reasons, the dialogue tree with the content
of the moves has been split.

(s

Py (2):
open(mam)

02‘(2):

query(mam,oo)

P3(2):
propose(painAnonCyc—mam,oo)

Ol: 05(2): 06(2):
query(pain,oo) query(nonCyc,00)
Pr(1): Pg(1):
pain since (pain,l) nonCyc since (nonCyc,1)
Oyg...: 04(2):

query(painAnonCyc—mam,oo)

Py(2):
mam since (pain,l),(nonCyc,1),(painAnonCyc—mam,3)

010(2):
propose(preg——mam,3)

P11(2): P12(2)2
query(preg—-—mam,3) query(preg,3)
014(2): 013(1):
—mam since (preg,2),(preg——-mam,1) preg since (preg,2)

5.11 Converting dialogues to and from Black and Hunter’s
system for inquiry dialogues

This section discusses the relation of dialogues in the adapted system to dia-
logues in the original system defined by Black and Hunter. It shows that it is
possible to convert dialogues from and to the adapted system. It also shows
that it is not possible to formulate dialogues in the adapted system that cannot
be formulated in the original system.

5.11.1 Converting from Black and Hunter’s system

Converting a dialogue in the adapted system to Black and Hunter’s system and
vice versa cannot be done on a move per move basis, since one move in Black
and Hunter’s system can be expanded to multiple moves in the adapted system,

78

and the order of moves may be significantly different after translation. Some
dialogues in Black and Hunter’s system are not allowed in the adapted system,
due to protocol rule Rg. These dialogues can be converted to the adapted sys-
tem, but they are slightly altered to adhere to rule Rg.

First, a function is determined to allow a rule to be evaluated as an argu-
ment, for example for the purposes of determining a target for a move with a
rule. For this purpose, ruleToArg turns a rule into an argument, for example:
ruleToArg(a — b) = ({(a,1),(a — b,1)},b). This is useful to determine the
consequence of finding support for a rule. It is defined as:

Definition 58. Given a rule /\ ¢| — 1 and optionally a pLevel p (which
IS
defaults to 1), the function ruleToArg is defined as:

ruleToArg(/\ ¢| — ,p) = A such that
PED

prem(A) = | J (@)U | \ ¢ = v
ped Pped
conc(A) =

Next, an algorithm is required to insert moves into a dialogue at any position;
this is required to allow moves to be repeated after the conversion. Basically,
the algorithm inserts a new move into d, after m;, with the speech act and
player provided. Moves that have an i¢d higher than j have their id increased,
and moves that target one of the increased moves have their target increased as
well.

Definition 59. Given a target move m;, a dialogue d, a speech act for the
new move and a player, the algorithm insertAfterTarget is defined as:

insertAfterTarget(m;, d, speechact, x) =

[if #m; such that t(m;) = m; and s(m;) = speechact

then insert m; into d such that

Vmy, € d where id(my) > id(m;), id(my) = id(my) + 1 and

Vmy € d where t(my) > id(m;),t(m;) = t(my) + 1 and
id(m;) =1id(m;)+1 and

s(m;) = speechact
pl(m;) = P(x) if Role(pl(t(m,))) = O, otherwise O
tmi) =

Additionally, two functions are required to provide respectively one (determin-

79

istically selected) or all targets of a speech act, in order to see which moves need
to be repeated.

Definition 60. Given an speech act speechact and a dialogue d, the function
determineTarget, of type determineTarget : (L, x M=) + Ny, and deter-
mineTargets, of type determineTargets : (L. x M<*°) s P(N;), determine
respectively the first and all the moves in the dialogue that have a speech act
that can be attacked by the given speech act.

determineTarget(speechact, d) =
x iff © € determineTargets(speechact,d) and
Yy € determineTargets(speechact,d), z <y

determine Targets(speechact,d) =

{x mg € d and }

(speechact, s(my)) € Rq
If a speech act contains an unknown pLevel (i.e. it is a query or propose move,
which have the pLevel of their target) the pLevel in the speech act is determined
by R, and can differ per target in the set provided by determineTargets.

With the functions defined above, the function to convert a dialogue from Black
and Hunter’s system for inquiry dialogues to the adapted system can be defined.

Definition 61. Given a well-formed dialogue D! consisting of moves my, ..., m;,

the algorithm dialogueToFramework of type dialogueToFramework : D —
P(M) is defined as

80

dialogueToFramework(D}) = d such that d € II and d is created by the fol-
lowing algorithm:

For every move m; € D}:

i is the index in the given dialogue
fromi=1to¢=1¢and

7 is the index to append new moves to the result dialogue
starts at 7 =1

if m; = (z, close, dialogue(0, ¢))

do not add anything to d

else if m; = (z, open, dialogue(wi, @))
add mqy,ms to d such that

zd(ml) =1

pl(m1) = P(x)

s(m1) = open(¢, o)
t(ml) =0

pl(mz) = O(z)

s(mg) = query(¢, o)
t(mg) =1

and set j to 3

else if m; = <x, open, dialogue (ai, [/\ (Z)] — w>>
add mj,mj41 ..., Mj4, to d such that
id(my) =
s(m;) = propose ([/\ qﬁ} — 1p7p)
(where p is set indirectly
by the determineTarget function)

t(my) = determineTarget(s(m;), d)
pl(m;) = P(z) if Role(pl(t(m;))) = O, otherwise O
Mjt1,-..,Mjty are query moves according to protocol rule Rg

and set jto j+v+1

else if m; = (z,assert, A)
add m; to d such that

id(my) =j
s(mj;) = assert(A)
t(m;) = determineTarget(s(m;),d)

pl(m;) = P(z) if Role(pl(t(m;))) = O, otherwise O
and set j to j+ 1

L and if ¢ = ¢, do repeat M oves(d)

where
repeatMoves(d) = for each m, € d:

81

and

if s(my) = assert(A)

then repeat Literal Premises(my, d)
next

if |determineTargets(s(my),d)| > [{m; € d|s(m;) = s(m)}|

then for every target w € determine Targets(s(my),d)

insertAfter Target(my,, d, s(my), Player(pl(my))

repeat Literal Premises(my, d) =

if s(my) = assert(A)
then V(z,p) € prem(A) where z is a literal
[if Pm, €d
such that s(m,,) = assert(Z)
and prem(Z) = {(z,p)}
then for every target
w € determineTargets(assert(z since (z,p)),d)
insertAfterTarget(m.,, d,
assert(z since (z,p)), Player(pl(my)))

To summarise:

every close move is ignored

every move that opens a warrant inquiry dialogue is translated to an open
move;

every move that opens an argument inquiry dialogue is translated to one
propose move with corresponding query moves;

every move that asserts an argument is translated to one assert move;

every translated move is repeated at every location it is allowed to, accord-
ing to the protocol and for arguments, their literal premise(s) are moved
as separate arguments, also at every location it is allowed to according to
the protocol.

The following Lemmas are used to construct the proof for Proposition 1.

For the following Lemmas, assume D! is a well-formed dialogue in Black and
Hunter’s inquiry dialogue system and dialogueToFramework(D}) = d.

Lemma 1. Every type of move in Black and Hunter’s system is translated
or dropped: Definition 61 contains cases for the open moves, close moves and
assert moves.

All the translated moves are translated in accordance with the protocol.

82

Lemma 2. In Definition 61, the open moves are translated to open or propose
moves, and all the required query moves are added, in accordance with the
protocol. Similarly, assert moves are translated to assert moves. Every resulting
move is given a target and a role.

Next, in order to show that the dialogue is well-formed, the three conditions
for well-formed dialogues must be met. From the above Lemmas and the fact
that D! is well-formed we can conclude that the resulting dialogue is correct
according to the protocol.

Lemma 3. The resulting dialogue d is correct according to the protocol of
the adapted system.

Proof Since DY is well-formed, the structure of D} ensures that there is always
a move that can be targeted in the resulting dialogue. Combined with Lemma
2, the protocol is satisfied. [

Next, the second condition is shown; every possible query move must have been
moved.

Lemma 4. Every open and propose will be followed by all the required query
moves.

Proof From Lemma 2. [
Finally, moves must be repeated whenever necessary, according to Definition 53.

Lemma 5. In the resulting dialogue d every speech act that has been moved,
has been moved against all its targets.

Proof Definition 61 contains a function repeatMoves that ensures that every
speech act present is moved against every possible target. This function is called
on the resulting dialogue if ¢ = ¢, so will be applied to the entire dialogue. [

Proposition 1. If D! is a well-formed dialogue in Black and Hunter’s inquiry
dialogue system and dialogueToFramework(Dt) = d, then d is a well-formed
dialogue in the adapted system.

Proof From Lemma 1 through 5 we can conclude that if
dialogueToFramework(D}) = d and D} is a well-formed dialogue, then d is a
well-formed dialogue. O

83

5.11.2 Converting to Black and Hunter’s system

The conversion from a dialogue in the adapted system to a dialogue in Black
and Hunter’s system is significantly more simple. First, a function is defined to
remove all duplicate subtrees from a dialogue.

Definition 62. Given a well-formed dialogue d, the function removeDupli-
cateSubtrees of type P(M) — P(M) is defined as:

removeDuplicateSubtrees(d) =
[while
[3m,, m, such that
duplicateSubtree(m,, my, d) and
#m.,,, m. such that duplicateSubtree(m,,, m.,d)
and |determineSubmoves(m,,,d)|
< |determineSubmoves(my,, d)|
do
if id(m,,) < id(m,)
then remove m, and every
mg € determineSubmoves(m,,,d) from d
otherwise remove m,, and every
m, € determineSubmoves(my, d) from d

where

duplicateSubtree(my,, m,,d) =

[return true iff m, # m, and s(m,) = s(my)

and

[Vm, € determineSubmoves(m.,,d)
Im, € determineSubmoves(m,,d))
such that s(my) = s(my)

and

[Vm, € determineSubmoves(m,, d)
Im, € determineSubmoves(m,,,d))

| such that s(m,) = s(m,)

and

determineSubmoves(m,,d) =

{mz

U

my, €d
and t(mgy) = my,

my | my € determineSubmoves(mg, d)
where m, € d
and t(my) = m,

84

An example tree is shown below. Note that a dialogue modified in this way is
not well-formed in the adapted system, however in Black and Hunter’s system
it will be, as the method of determining the status of the topic of the dialogue
is different in their system.

For example:
a since (b, 3), (b — a),3)

propose(c — —b, 3) propose(c — —a, 3)
query(c i —b,3) query(c,3) query(c ‘—> -a,3) query(c,3)
.. subtree

duplicate subtrees

is reduced to:
a since (b, 3), (b — a),3)

propose(c — —b, 3) propose(c — —a, 3)

|
/\ query(c — —a, 3)

query(c — —b,3) query(c,3) \
| .
.. subtree

Now, the function to convert dialogues from the adapted system to Black and
Hunter’s system can be defined. The function does not follow the ids of the
moves for translation, rather it traverses the dialogue tree in order to get the
correct order of moves for Black and Hunter’s system, which has more restric-
tions on move ordering. The tree traversal is a modified preorder traversal,
where assert moves (or query followed by assert) are considered to be on the
left and propose (or query followed by propose) on the right26.

The path that the algorithm takes through the tree is displayed in the tree
below. The numbers at the nodes represent the order in which the algorithm
moves through the tree.

26For convenience, the distinction between a move and the node labelled with a move are
ignored in the definition, read ‘the node labelled with m’ when no functions are applied to a
move m.

85

1
open(b)

query(b,00)

propose(a—b,00)

4
query(a—b,00) query(a,00)
b since (a,4),(a—b,4) a since (a,4)

propose(d——a,4)

11
query(d——a,4) query(d,4)
12 10

—a since (d,3),(d——a,3) d since (d,3)

Step 7 and 12 add close moves to the dialogue, for their respective argument
inquiry dialogues.

Definition 63. Given a well-formed dialogue d; consisting of moves myq, ..., my,
the function dialogueToInquiry of type dialogueTolnquiry : P(M) — D is
defined using two stacks Guide and CurrentDialogue of nodes to visit and
push, pop and top to respectively add an element to the top of the stack, and
view the top element of the stack respectively with or without removing it.

dialogueT oInquiry(d) = DY such that

d = the well-formed original dialogue

DY = the resulting dialogue

J = index to add new moves at in D}

Guide = stack to guide the algorithm over the dialogue tree
CurrentDialogue = stack to mark the current dialogue

86

[d; = removeDuplicateSubtrees(d)
push(my, Guide)
while m; = pop(Guide)
[if s(m;) = open(¢,)
[push(dialogue(wi, ¢), Current Dialogue) and
Y1y, my, € d if t(my,) = and t(m,) = w
then push(m,, Guide); first all propose , then all assert
and m; € D} = (Player(pl(m;)), open, dialogue(wi, §))
| and increment j
else if s(m;) = propose ({/\ (b} — 1/),p>
[push(dialogue(ai, ¢), Current Dialogue)

and m; € D} = (Player(pl(m;)), open, dialogue(ai, [/\ (;5} — 1))
and increment j and

[Vm.,,m,, € d if t(m,) =i and t(m,) = w

and s(m,,) = query(x, p)(where y is a literal)

and Performative(s(m,)) = assert

then m; € DY = (Player(pl(my)), assert, Content(s(m,)))
and increment 7 and

Vm, € dif t(m,) =v

then push(m,, Guide); first all propose , then all assert

next
[Vm.,,my, € dif t(my) =i and t(m,) = w

and s(m,,) = query ({/\ (b} — w,p)

and Performative(s(m,)) = assert then push(m,,, Guide)
next
[V., my, € dif t(my) =i and t(m,) = w
and Performative(s(m,)) = propose then push(m,, Guide)
else if s(m;) = assert(A)
[if Am,, € d; such that s(m,,) = assert(B)
and prem(A) C prem(DB)
and Player(pl(m.,)) = Player(pl(m;))
then

Vm, € d if t(my) =1

then push(m,, Guide); first all propose , then all assert
and m; € DY = (Player(pl(m;)), assert, A)

and increment j

and if s(t(m;)) = query ([/\ gi)] — zb,p)

and m,, = top(Guide) and t(m,,) # t(m;)

then dialogue = pop(CurrentDialogue)

| | | and Vz € Z, add (z, close, dialogue) to DY
Finally, if CurrentDialogue is not empty

then Va € Z, add (z, close, top(Current Dialogue))

and VYm;, my, where id(m;) = id(my) + 1

if Player(pl(m;)) = Player(pl(my)) then insert

(z, close, dialogue(Type(Current(DI)), Topic(Current(D?))))
between m; and my, such that x 758,?layer(pl(mk))

To summarise:
e all duplicate subtrees are removed from the dialogue;
e open moves are changed to moves that open a warrant inquiry dialogue;

e propose moves are translated to moves that open an argument inquiry
dialogue;

e assert moves are translated to assert moves;

e close moves are added when an argument inquiry is done;
e every query move is ignored;

e close moves for the warrant inquiry dialogue are added;

e close moves are moved inbetween two consecutive moves if they are made
by the same player;

e the restriction on order of moves has been met by traversing the tree with
a specific pattern.

The following Lemmas are used to construct the proof for Proposition 2.

For the following Lemmas, assume d is a well-formed dialogue in the adapted
system and dialogueT oInquiry(d) = Dy.

Lemma 6. Every type of move in the adapted system is translated or
dropped: Definition 63 contains cases for the open moves, close moves and
assert moves.

All the translated moves are translated in accordance with the protocol.

Lemma 7. The content of the moves in D7 is correct according to Black and
Hunter’s protocol.

Proof 1In Definition 63, every translated move is translated to a sequence of
moves that is correct according to the protocol defined by Black and Hunter.
By using a Guide to move over the tree, the order of the moves is ensured to be
correct in D}. Finally, d is well-formed and duplicate moves have been removed
by the algorithm defined in Definition 62. [

Next, in order to show that the dialogue is well-formed, the three conditions for
well-formed dialogues must be met.

Lemma 8. The first move in D} move be an open move.

88

Proof Since d is well-formed, the first move is either an open or propose move.
In Definition 63, open and propose moves are translated to a open move. [

Next, the second condition is shown: termination.

Lemma 9. { is a terminated dialogue.

Proof In Definition 63, close moves are added for each subdialogue, and at the
end of the translation, close moves are added for the top-dialogue. This is done
by maintaining a stack that records the current dialogue. O

Finally, subdialogues must be well-formed argument inquiry dialogues.

Lemma 10. Each subdialogue in Dj is a well-formed argument inquiry
dialogue.

Proof From Lemma 9 and Lemma 7. [

Proposition 2. If d is a well-formed dialogue in the adapted system and
dialogueTolnquiry(d) = DY, then DY is a well-formed dialogue in Black and
Hunter’s inquiry dialogue system.

Proof From Lemma 6 through 10 we can conclude that if dialogueT oInquiry(d)
= DY and d is a well-formed dialogue, then D7 is a well-formed dialogue. O

5.11.3 No 1:1 relation

Since there is such a direct correlation between moves in Black and Hunter’s
system and this adapted system, any dialogue formulated in Black and Hunter’s
system has an equivalent dialogue in the adapted system. However, since there
are restrictions on the assert moves, the set of dialogues that can be formulated
in Black and Hunter’s system is larger than the set of dialogues that can be
formulated in the adapted system. Since the adapted system can formulate
these dialogues, but forces assert moves inside argument inquiry dialogues, sev-
eral dialogues in Black and Hunter’s system convert to the same dialogue in the
adapted system.

Aside from the fact that the ordering of many of the moves could be different,
every propose move m; € d that attacks a move m; € d; creates two possible
situations: either the assert move containing the entire argument is moved di-
rectly against m; (i.e. if all the premises of this argument are in one agent’s
belief base) or the premises are move individually before the entire argument
is moved, in an argument inquiry dialogue. Note that this situation was also
the reason Rg was added to the protocol; if it were not, both options would be

89

represented in the tree.

5.11.4 Proof of equivalence

In order to prove that a dialogue in one system is equivalent to a dialogue it
has been converted to in another system, a measure for equivalence has to be
determined. First, this measure is defined. After this, the statement that is to
be proved will be formalised. Third, the proof is split in smaller lemmas and
worked out.

In order for two dialogues to be equivalent, the following must hold:

Outcome The dialogues must have the same outcome;

Committed facts The dialogues must have the same facts and rules in the
commitment stores, though not necessarily in the same commitment stores
(because of the difference between players and roles in the adapted sys-
tem);

Arguments The dialectical trees must be equal to show that the same argu-
ments have been used.

Definition 64. Let d,d’ be two dialogues with the same topic. Dialogue d
and d’ are equivalent if they meet three conditions:

Outcome Outcome(d) = Outcome(d');
Committed facts Cy = Cy;

Arguments dialecticalTree(d) = dialecticalTree(d’).

Note that these criteria are not restricted to well-formed dialogues; dialogues
that are not well-formed are still equivalent if these conditions are met. However,
since the conversion produces well-formed dialogues from well-formed dialogues,
the proof below is restricted to well-formed dialogues.

In order to prove that the conversion provides an equivalent dialogue, but in
a different system, a proof is constructed to show that a dialogue before the
conversion and the dialogue after the conversion are equivalent according to the
above criteria. This is proven in reverse order of the conditions, by first proving
that the same arguments are used, second that the same committed facts are
used, and finally that the outcome is identical.

The following Lemmas are used to construct the proof for Proposition 3.

90

Arguments In order to prove that the arguments asserted in the dialogues
are identical, the dialectical trees of the dialogues must be shown to be equal.
While the conversion from Black and Hunter’s system to the adapted system
does create more arguments, these are contained within the arguments that are
already present in the original dialogue, so they are not new arguments and are
not visible in the adapted system’s dialectical tree.

Lemma 11. The function in Definition 61 does not add arguments that are
visible in the adapted system’s dialectical tree, and does not remove arguments.

Conversion to Black and Hunter’s system only removes arguments that do not
need to be asserted in Black and Hunter’s system, they already appear in the
dialectical tree.

Lemma 12. The function in Definition 63 does not remove arguments that
are visible in the dialectical tree?” and does not add arguments.

A function has been provided to create the dialectical tree from a dialogue in the
adapted system. Following these steps removes all the additional moves from
the dialogue tree until only the complete asserted arguments remain. Since
Lemma 11 and Lemma 12 show that no arguments are added or removed and
the dialogue tree contains all moves and repeated moves where necessary during
conversion to compensate for the fact that the tree in Black and Hunter may
contain arguments at multiple locations, this must necessarily be the same tree.

Lemma 13. When a dialogue is translated to or from the adapted system,
the dialectical tree in the original dialogue is equal to the dialectical tree in the
resulting dialogue.

Proof From Lemma 11, Lemma 12 and Definition 57. O

Committed facts In order to prove that the same committed facts have been
used, the commitment functions are examined. Both Black and Hunter’s sys-
tem and the adapted system only make changes to the commitment stores when
an assert move is made. Lemma 11 and Lemma 12 have shown that the same
arguments are asserted.

We can conclude that there cannot be more committed facts than there are in
the original dialogue, but we can also conclude that there cannot be less, by
looking at the commitment functions. Since these function are nearly identical
(except for the difference of players and roles, which is ignored as it has no
consequence for the content of the combined commitment stores), it is safe to

27Tt may remove arguments that are also present as a subargument of another argument,
these duplicates are not necessary in Black and Hunter’s system.

91

say there are no difference in this area either.

Lemma 14. When a dialogue is translated to or from the adapted system,
the same facts are committed in the original and the resulting dialogue.

Proof From Lemma 11, Lemma 12 and the commitment function in Defini-
tion 50, which only updates for assert moves and is structurally identical to the
commitment function in 20. O

Outcome It has already been shown that the dialectical trees are equal. Black
and Hunter base the outcome of a dialogue on the status of nodes in the dialec-
tical tree. While the adapted system does not, the outcome is designed to give
a similar result: a set of arguments when the dialogue is an argument inquiry
dialogue, or a fact that is deemed warranted if the dialogue is a warrant inquiry
dialogue.

Since the validity of the topic of the dialogue is based on the moves that at-
tack it, the attack relation that defines the dialogue tree is also visible in the
dialectical tree (since, in the adapted system, dialectical tree is created from the
dialogue tree).

Lemma 15. In Definition 57 the attack relations outside argument inquiry
dialogues are maintained and attack relations inside the argument inquiry di-
alogue exist merely to construct the argument that we see in the dialectical
tree.

Additionally, the last relevant move, which determines the outcome of the dia-
logue in the adapted system, is also present in the dialectical tree if the dialogue
is well-formed.

Lemma 16. If a dialogue is well-formed, the last relevant move is an assert
move and the argument inside this assert move is present in the dialectical tree
(possibly inside a larger argument).

Thus, the last relevant move might also be determined using the dialectical tree
before and after the move, which resembles the way Black and Hunter determine
the outcome.

Lemma 17. When a dialogue is translated to or from the adapted system,
the original and the resulting dialogue have the same outcome.

Proof From Lemma 15 and 16 we know that that determining the outcome
on the dialectical tree gives the same result as determining outcome on the last
relevant move, and since the dialectical trees are the same according to Lemma

92

13, the outcome must be the same. [

Proposition 3. If D! is a well-formed dialogue in Black and Hunter’s inquiry
dialogue system and dialogueToFramework(D}) = d,, then d, and D! are
equivalent according to Definition 64. Similarly, if d is a well-formed dialogue
in the adapted system and dialogueTolnquiry(d) = DY, then DY and d are
equivalent according to Definition 64.

Proof Proposition 1 and 2 have shown that translation of a well-formed di-
alogue produces a well-formed dialogue. From Lemma 13, 14 and 17, it has
been proven that dialogues before and after the conversion process (in either
direction) are equivalent according to the criteria defined in Definition 64. O

5.12 Generating dialogues

Aside from a system for inquiry dialogues, Black and Hunter have also provided
an agent strategy for use in generating dialogues. They have proven that the
dialogues generated by agents using this exhaustive strategy are always sound
and complete, based on the agents’ belief bases. This strategy can be used with
minor changes in the adapted system. Three changes are required: since close
moves are not possible, these are removed from the strategy; query moves must
be added using protocol rule Rg and the format of the moves must be changed.

Definition 65. The exhaustive strategy 2, (d), for player = participating
in a well-formed dialogue d is a function €, : P(M) — M and is defined as:

0,(d) =
Picky(Queriesy(d)) iff Queries,(d) # 0
Pick,(Asserts,(d)) iff Queries,(d) =10

and Asserts,(d) # 0
Pick,(Proposes,(d)) iff Queries,(d) = @
and Asserts,(d) =
and Proposes,(d) # (D
where

93

Picky(Z) = as defined in Definition 26, with altered move notation;
Picko,(E) = as defined in Definition 26, with altered move notation;

and s(m;) = query ([/\ ¢] — ¢,p)

or

[s(m;) = query(a)

Picky(2) = and #im; € = such that

s(m;) = query ([/\ ¢] — w,p)
or s(m;) = query(5)

and 0 < «

when lexicographically sorted

and
Asserts,(d) =
m | m € Pr(d) and
s(m) = assert(A) and
pl(m) € Roles and
Ae A(zx U Cd(P) U Cd(O))
and
Proposes,(d) =
m | m € Pr(d) and
s(m) = propose(R) and
Jdp € Ny such that (R,p) € X%
and
Queries,(d) =
m | m € Pr(d) and
s(m) = query(¢)
where p € SUR

Note that, as in Black and Hunter’s exhaustive strategy, the strategy is assumed
to be used after the first open move in a dialogue has been made (in the adapted
system, this could be either the first open or propose move).

5.12.1 Proof of equivalence

The following Lemmas are used to construct the proof for Proposition 4.

In order to show that the adapted exhaustive strategy produces the same dia-
logues as the original exhaustive strategy, the dialogue equivalence conditions
from Definition 64 is used.

Lemma 18. The Pick, and Pick, functions are identical to Black and
Hunter’s definition, except for notation. The Asserts, function has been rewrit-
ten for the adapted system to reflect the changes in role notation, but is other-
wise unchanged.

94

Arguments The only differences in the generated dialogues are the result of
differences in the protocol, as the protocol of the adapted system requires that
literals are moved individually before they are moved inside larger arguments.
These moves are added to the assert moves generated by Asserts,, but since
these were moved inside larger arguments in Black and Hunter’s exhaustive
strategy, the arguments do not differ.

Lemma 19. Asserts, provides every argument the original in Black and
Hunter’s system does, and does not add arguments that are visible in the di-
alectical tree.

Committed facts On the basis of the equivalence condition of arguments,
this must be the same.

Lemma 20. Given the same belief bases, the committed facts in a dialogue
generated by the adapted exhaustive strategy and those in a dialogue generated
by Black and Hunter’s exhaustive strategy are identical.

Proof From Lemma 19 and the commitment functions in Definition 50 and 20.
O

Outcome Black and Hunter prove soundness and completeness on the out-
come of the dialogue when the exhaustive strategy is used. This must also be
possible with the adapted exhaustive strategy. Fortunately, this can also be
based on the fact that the set of arguments is roughly equivalent and the fact
that the Proposes, is equivalent to Opens,. This ensures that a dialogue is
created with the same structure as the one that would be created by the origi-
nal exhaustive strategy.

The possible differences are based on the protocol and difference in dialogue
structure between the two systems. As it has been shown that the structures
can be converted to each other, and the original dialogue is equivalent to the
converted dialogue, the dialogue structure has no influence on the outcome.

Lemma 21. The outcome of a dialogue generated by the adapted exhaustive
strategy is equivalent to the outcome of a dialogue generated by Black and
Hunter’s exhaustive strategy, given the same belief bases.

Proof From Lemma 18, 19 and 17. [

Proposition 4. Vd that is a dialogue produced by the exhaustive strategy
defined in Definition 65, 3D? such that D is generated by Black and Hunter’s
exhaustive strategy and dialogueTolnquiry(d) = D} and VDY that is a dia-
logue produced by Black and Hunter’s exhaustive strategy, 3d’ such that d’ is

95

generated by the exhaustive strategy from Definition 65 and
dialogueT oFramework(Dy) = d'.

Proof Lemma 18 through 21 show that the conditions in Definition 64 are
met by dialogues generated by Black and Hunter’s exhaustive strategy and the
strategy defined in Definition 65, so that given the same belief bases, equivalent
dialogues are generated. [J

5.13 Fundamental properties

The adapted system can now be compared to the fundamental properties of
Black and Hunter’s system for inquiry dialogues. These fundamental properties
were determined on page 39. First, the distinction between agents and roles has
been made clear in the adapted system, so this property has been preserved.
Similarly, since the exhaustive strategy has been converted successfully, the pre-
determined result has also been preserved and soundness and completeness can
be benchmarked on the belief bases if this strategy is used.

The major differences are in the simplicity of the moves and the absence of
targets for moves. Every move now has a target; this was a necessary change
for the system to fit with Prakken’s framework, it could not be avoided without
changing the framework. The simplicity of moves has been reduced, increasing
from three performatives to four and, more importantly, some of these are in
forced relationship, i.e. the query moves following a propose or open move.

Lastly, the cooperative nature of the dialogue has been preserved when viewed
from an agent’s perspective, but not when viewed from a role. There are specific
Proponent and Opponent roles, so the competitive element present in persua-
sion dialogues has been incorporated into the adapted system. From an agent’s
perspective, however, these are merely tools which are used when they are con-
venient. They make explicit whether a move aims to prove or disprove the topic
of the dialogue, a property that was implicit in Black and Hunter’s system.

5.13.1 Removing propose

Given the fact that the simplicity of moves has been reduced, one might wonder
why the propose move is necessary, given the similarity with the assert move.
Why not just assert the rule, instead of using a special move?

The most important reason this was not done for the adapted system is the fact
that the propose move and assert move represent significantly different dialogue
actions: the propose move proposes a dialogue about the possibility of a rule
being used for the dialogue, while an assert move states that the agent believes
something to be true.

96

A few example trees are shown where the propose was replaced, all alterations
of the tree below, and each will be discussed.
open(a)
|
query(a,)

propose(b — a, 00)

query(b — a, o) query(b, 0o)

\ \
a since (b,2), (b — a,2) b since (b,2)

Assert the entire argument instead of propose :
open(a)

query(a, o)

\
a since (b,2), (b — a,2)

R

query(b — a, 00) query(b, 0o)

b — a since (b — a,2) b since (b,2)

This first example is problematic for several reasons: First, assuming agents
only move things they believe, the a since (b,2), (b — a,2) can only be moved
if both premises are in the beliefs of a single agent (or the commitments of the
players, which in this case don’t contain the necessary beliefs, as the argument
inquiry is opened to determine these). Second, it would mean that the entire
argument can be moved, and the tree below it will be fixed and not allow any
alterations; if it could contain different premises than those that were used in
the replaced propose move, the extending of arguments would have to be al-
lowed. It has been shown before that this is inconsistent, given the preference
levels.

Assert the rule instead of propose :

97

open(a)
\
query(a, oo)

b — a since (b — a,2)

T

query(b — a, 00) query(b, o)

\ \
a since (b,2), (b — a,2) b since (b,2)

This second tree is more reasonable; it is not problematic for the commitment
store function, as the agent basically states that he beliefs that this defeasible
rule is true, nor does it require one agent to believe everything in the argument.
They replying query move is somewhat odd, but a query(a) is not an option
either, as this has been moved higher up in the tree. Unfortunately, it is also
not clear how the oo weight of the query move above the replaced propose move
is reflected in the query moves below the replaced propose move, nor is it clear
how the moves attack each other.

Assert the rule instead of propose move, and only the premises queried:
open(a)
\
query(a, o)

\
b — a since (b — a,2)
\
query(b, co)

\
b since (b, 2)

This last example is perhaps the most similar to Prakken’s dialogues; the entire
argument is never moved, but it can be read from the moves in the tree. In this
case, the query move has lost its special function and will function as the why
move does in Prakken’s example liberal dialogues. Like the first example, this
proves to be an inconsistent system, as extension of an argument with a certain
preference level may actually make it weaker, breaking the defeat relations.

To conclude, the option to replace the propose move with the assert move might
make the moves more simple, but this comes at the cost of the concept of
argument inquiry dialogues and it might have a significant impact on either the
structure and/or the consistency of the dialogues.

98

5.14 Summary

This chapter has shown that it is possible to adapt Black and Hunter’s system
for inquiry dialogues to fit in Prakken’s framework. The cost of the change
was not significant, but there are considerable differences between the original
system as defined by Black and Hunter, and the adapted version.

First, there are now more speech acts, with different, more complex conditions.
Second, moves can now be moved several times, something that was not a pos-
sibility in Black and Hunter’s system. Third, arguments must be built up using
argument inquiry dialogues, in order to ensure a readable tree. Fourth, since
close moves are no longer available to skip turns, turntaking restrictions have
been loosened to allow any player to make a move in a given turn.

Prakken’s framework remains unchanged except for some notational changes.
This means that any statement made about Prakken’s framework is applicable
to this adapted system for inquiry dialogues.

Functions have been provided to convert dialogues to and from the adapted sys-
tem, and while it is not a 1 to 1 mapping, it is a restricted mapping: converting
a dialogue from a set of dialogues in Black and Hunter’s system (with the same
dialectical tree) to the adapted system and back to Black and Hunter’s system
will result in a dialogue in that set.

The exhaustive strategy defined by Black and Hunter has also been defined for
the adapted system, and the differences are small, reflecting the changes in the
speech acts.

Finally, no mention has been made about restrictions on the number of players
in Z, and the players have been effectively disconnected from the dialogue; they
make the moves, but the fact that a move is made by ¢ € Z has no consequence
whatsoever, since Prakken’s proofs use the roles, not the agents?®.

28Recall that his definition of agents was renamed roles.

99

6 Adapted version of Prakken’s framework that
is compatible with Black and Hunter’s system
for inquiry dialogues

The previous chapter examined the changes needed to Black and Hunter’s sys-
tem for inquiry dialogues, in order to fit its dialogues into Prakken’s frame-
work without changing anything that was formally defined in Prakken’s frame-
work definition. This chapter defines a system the other way around, adapting
Prakken’s framework where necessary to allow Black and Hunter’s inquiry dia-
logues to be formulated in it without making significant changes to the structure
of Black and Hunter’s system. Functions of Prakken’s that were not explicitly
defined, such as the definition for the turntaking function will be filled in where
necessary.

When the adapted system is defined, any statement made about Black and
Hunter’s system is applicable to it.

The necessary adaptions to Prakken’s framework and the functions that have
to be defined in Prakken’s framework are given, including the protocol for the
system. Next, two functions are defined to provide the outcome of the different
dialogues. This is followed by some example dialogues, and functions to convert
dialogues from and to Black and Hunter’s system for inquiry dialogues. After
that, the exhaustive strategy is defined for the adapted system. Finally, the
fundamental properties are evaluated for the adapted system.

6.1 Framework definition

The basic framework is identical to the one from the previous chapter, in Def-
initions 39 through 41; the protocol, moves and speech acts are different. The
modus ponens rule is used here as well.

The following sections will define the system more specifically. Note that com-
ments made about notation on page 11 apply here as well. Additionally, as in
the previous chapter, dialogues are assumed to be well-ordered sets of moves,
allowing notation such as m; € Dﬁ and my; € d;.

6.2 Argumentation theory

The set Args in Definition 40 is defined as A(S* UR*). The = relation, which
is the defeat relation between arguments, is defined from the definition of the
defeat relation between arguments given by Black and Hunter. It is repeated
below for convenience.

Definition 9, repeated®. Given arguments A, B and SB, with SB a sub-

29Originally defined on page 13

100

argument of B, where A attacks B at SB, if pLevel(A) < pLevel(SB) then A
defeats B, specifically if pLevel(A) < pLevel(B) then A is a proper defeater
of B, otherwise A is a blocking defeater of B and vice versa.

6.3 Communication language

Since performatives are not explicitly defined, but defined in the table of moves,
a separate set is defined from this table of moves to match with the Perf set in
Prakken’s framework.

The framework defines a performative as unary. While it is true that the perfor-
matives in Black and Hunter’s system do receive only a single parameter, this
parameter is often of a complex form: dialogue(type, topic) or (P, ¢). Addition-
ally, given the type of the dialogue, certain restrictions apply to the topic of the
dialogue. The open and close moves require some modification to fit the style
of the framework.

Definition 66. The performatives for the adapted system for inquiry dia-
logues are
Perf =

assert for asserting arguments,

openg; to open an argument inquiry,

closeq; to close an argument inquiry,

open,,; to open a warrant inquiry, and

close,; to close a warrant inquiry
Each is a unary function, with restrictions on the parameters to be defined in
the communication language.

It is clear that, using the newly defined performatives, the communication lan-
guage can be defined in accordance with Prakken’s structure. An adapted set
for the L. is defined below, using Black and Hunter’s notation for S* and R*3Y.

Definition 67. The communication language for the adapted system for
inquiry dialogues is defined as the set

b= { assert(c) | c € Args }
; { openai(c) |ceR* }
- { closesi(c) | ceR* }
U{ openui(c) | ce S*)
U

{ closewi(c) | ceS* }

30Which are equal to sets defined by Prakken, respectively L; and R

101

Note that these changes are not an adaptation of Black and Hunter’s system for
inquiry dialogues, this is merely a notational alteration. For example the move
(x, open, dialogue(6,v)) would have the speech act openg(y).

6.3.1 Attacking reply relation R, and surrendering reply relation R,

No equivalent of Prakken’s R, and Ry are defined in Black and Hunter’s sys-
tem. While the lack of R, is not a significant loss, since Black and Hunter’s
system really only attacks using counterarguments, and has no why moves, it is
necessary to define an equivalent of R,,.

Given the communication language defined in Definition 67 above, this relation
can be established based on the only comparable relation, the attack relation
between arguments. Definition 8 shows that arguments in Black and Hunter’s
system are in an attack relation if the attacker’s claim conflicts with either the
claim of the object of the attack, or one of the subarguments in the object of
the attack. The winner is determined by preference level. Based on this, a
definition for R, is defined3!.

Definition 68. The attack relation between speech acts for the adapted
system for inquiry dialogues is defined as
(assert(c), assert(d)) | assert(c),assert(d) € L,
R, =
c defeats d

Note that, since there are no performatives that can be surrendered to, the set
Rs can be empty.

Definition 69. The surrender relation between speech acts for the
adapted system for inquiry dialogues is defined as
R,=10

6.3.2 Move targeting

Many of the moves in the newly defined L., defined in Definition 67, are not
compatible with Prakken’s idea of move targets. Therefore, the definition of
move targets needs to be modified slightly, to allow for a correct definition of
targets for moves. Moves have a set of targets; for some moves the set is (), some
have only {0}, the rest have one or multiple targets.

Definition 70. Moves that require targets are called operative moves, the
set of which is denoted by O(D!) and defined as
o(Dy) =

31 Again, using Prakken’s notation Args

102

[s(m;) = assert(A) and
Type(Current(D)) = wi
or
[s(m;) = assert(A) and
Type(Current(DL)) = ai
and DY such that
D? sub-dialogue of DY
and Type(D?) = ai
and the consequent of
| Topic(Current(D})) = conc(A)

miEDi

Operative moves are assert moves that are inside a warrant inquiry dialogue, or
inside the topmost argument inquiry dialogue, if they make a claim about the
topic of that dialogue. Deeper argument inquiry dialogues do not provide any
assertion that can attack earlier operative moves. With this definition, every
argument inquiry dialogue inside a warrant inquiry dialogue provides one, mul-
tiple, or possibly no operative moves, but any operative move provided has a
valid target.

For the operative moves, the targets are determined using the attack relation
between the arguments asserted in the moves. The first operative move has
target 0, as in Prakken’s definition. Any move not in O has no target, so the
t(m) function returns null.

The definition below ensures that any move that can be attacked by an oper-
ative move is in the target set of this operative move. If there is an operative
move for which there are no targets, the result is a singular set containing only 0.

Definition 71. The function determineTarget(D}), of type
determineTarget : D — P(Np), returns the set of targets of move m; in dialogue
Dt where Dt = myq,...,my.

determineTarget(Dﬁ =
id my,m; € O(DY) and
(mg,m;) € Ry

my € O(DY) and
Im; € O(Dt) where
(my, m;) € R,

{ null ‘ my ¢ O(DY) }
where id(m;) returns the id of a move, as defined by Prakken.

Note that this definition allows that several moves in an argument inquiry di-
alogue have target {0}. As a matter of fact, any operative move in a top-level

103

argument inquiry dialogue has target {0}.

Since the operative moves have targets, they can be structured into a tree struc-
ture. This tree is neither a dialogue tree nor a dialectical tree; the nodes are
moves, so it is somewhat a dialogue tree, yet not all the moves of the dialogue
are in the tree. Since the only moves in the tree are operative moves (moves
that are in the set O defined in Definition 70), this type of tree will be refered
to as the operative dialogue tree, OT.

A move may appear at multiple locations in the operative dialogue tree if it has
multiple targets. Also, since top-level argument inquiry dialogues provide mul-
tiple moves with target {0}, they provide a operative dialogue graph, as there
are several disconnected nodes and no real tree structure; this fact is mostly ig-
nored because the operative dialogue graph is neither a useful nor an interesting
structure, merely a graph containing every operative move and no edges.

Definition 72. The operative dialogue tree of a warrant inquiry dia-
logue D! (or operative dialogue graph of an argument inquiry dialogue, as
Root(OT(DY)) is undefined) is denoted OT(D?) and defined as

OT(DY) =
if Type(D}) = wi
[Root(OT(D%)) = m; such that

m; € Dfo

and 0 € t(m;)
else if Type(D?) = ai
[Vm,; such that

m; € D,t«

[and 0 € t(m;)
make a node with label m;

and Vm; € D! such that t(m;) # null and 0 ¢ t(m;) :
m; is a child of each node with label [€ t(m;)

6.3.3 Player roles

As was done in Definition 44, the adapted notation for roles is used here.

Since dialogues in Prakken’s framework are “assumed to be for two parties ar-
guing about a single dialogue topic”, a function is given to assign a role to a
move. This way, moves are made by a specific role, but this need not be the
same player; any player can make a move using either role.

In order to determine the role of a move, the content of the entire dialogue must
be considered. Given a top-dialogue from Black and Hunter’s inquiry system,
the role of a move in the dialogue is determined by looking at the moves made
before it. The move is considered to be made by the Proponent if

104

the top-level dialogue is an argument inquiry dialogue (these contain a
single role, as there are no counterarguments)

the sub-dialogue the move is in is an argument inquiry dialogue and the
topic of the sub-dialogue supports the topic of the top-level dialogue

e the move closes the top-level dialogue (always opened by Proponent)

the move asserts an argument that supports the topic of the top-level
dialogue (directly or indirectly)

Definition 73. The function determineRole(DY), of type determineRole :
D — Roles, receives an inquiry dialogue and returns the role of move m;, where
Dt =myq,...,my.

determineRole(D}) =
P(x) iff Type(D}) = ai
or p; = closeyy;
or
[Type(Current(DY)) = ai
and proRoot(Arg, DY)
where
| Arg = ruleToArg(Topic(Current(D7), 1)
or

pe = assert
and proRoot(c;, DY)

where
[2 = player moving my

pr = speech act moved in m;

¢; = parameter of the speech act
O(x) otherwise

where z = player moving m;

where ruleToArg turns a rule into an argument, as defined in Definition 58.

And proRoot, of type proRoot : A+— D — Boolean, determines whether an
argument supports or opposes the root argument.

105

proRoot(Arg, DY) :
[T = operative dialogue tree of D}
if Argisnotin T
[V¥ node N in T with label [such that
(assert(Arg), s(l)) € R,
add a node with Arg to T as child of N
return true if 30" such that
[T = argumentation line from Root(T)
to a node with Arg
| and I' has an odd number of elements
| return false otherwise

6.4 Moves and dialogues

Moves are defined as they were in Definition 49. The same role notation is used,
and the same functions are used.

Definition 74. A dialogue is a sequence of moves from m, to m;, denoted
D! where r,t € Ng. The empty dialogue is DJ, and for any nonempty dialogue
it is true that 1 <r <.

The first move of a dialogue D!, move m,, always contains an openg(7y)
speech act, as this determines both the type and topic of the dialogue. The
functions Type and Topic that give the type and topic of a dialogue, defined as
Type(Dy) =

{ 0]iff s(m,) = openg(y) }
Topic(DL) =

{ 7 | iff s(m,) = openg(v) }

6.5 Commitment function

Definition 75. The commitment store update function gives the new
commitment store of a role » € Roles after a move my.
Ci(r) =

0 iff t <1

Ci=Yryu® iff s(my) = assert((®, ¢))
and Role(pl(my)) =1
Ct=(r) otherwise.
6.6 Turntaking function

In Black and Hunter’s system, the turntaking function is integrated into the
protocol. In order to fit this to the T" function in Prakken’s framework, it is now
explicitly defined, using the adapted notation for roles defined in Definition 44.

Definition 76. T(D!.) =

106

{ {P(x),0(x)} where P(x),0(z) € Roles
and x # Player(pl(my))

Note that this function is made to be as flexible about the number of players as
possible.

6.7 Protocol

Several changes and additions are necessary to Prakken’s protocol rules. First,
Prakken’s protocol conditions are repeated below for convenience. Note that
while the notation of the protocol Pp, was changed to Il above, the protocol
function Pr will still be used.

Definition 34, repeated®?. Vd,m if m € Pr(d) then

Ry pl(m) € T(d)

Ry if d # dy and m # m; then s(m) is a reply to s(t(m)) according to L.
R3 Vm/ € d if t(m) = m/ then pl(m) # pl(m’)

Ry Vm/ € d if t(m) = t(m’) then s(m) # s(m/)

Rs vm' € dif t(m) = t(m’) and s(m') is a surrendering reply, then m is not an
attacking counterpart of m’

As moves are allowed to have multiple targets in this adapted system, rule Ry
has to be altered. Additionally, the protocols in [3] for argument and warrant
inquiry need to be merged into a single protocol, and fit to the adapted system
with as little changes as possible.

First, rule R, is altered; R, states that no moves with the same speech act may
target the same move. Since moves without target are allowed in this adapted
system, R4 has to be adapted to fit this change. Additionally, the only move
that can be repeated is a close move, all others can only be moved once, regard-
less of target (note that since a move can have multiple targets, this is essentially
the same as moving it multiple times with a single target).

Next, assert moves have to be restricted, as without a target any assert move
with any content would be valid. Therefore, inside a warrant inquiry dialogue,
an assert move needs to change the operative tree to be allowed to move; inside
an argument inquiry dialogue, it must assert an argument of which the conclu-
sion contains a literal that is in the topic of the argument inquiry dialogue.

Similarly, a subdialogue can be opened only when the topic of the subdialogue
would either change the operative dialogue tree or is a rule that concludes a

320riginally defined on page 31

107

literal that is in the topic of the current dialogue. Additionally, both open.,;
and open,; moves are allowed to be moved when the dialogue is empty. Finally,
close moves may only be moved when they close the current dialogue.

To summarise, the following change and additions are made to the protocol
rules:

Replacement for rule 2 Every move is allowed to have multiple targets, or
no target at all;

Replacement for rule 4 No move may be moved multiple times, except close
moves;

Assert moves assert moves can be made when they change the operative tree
(in a warrant inquiry dialogue), or when they assert a literal that is in the
topic of the current dialogue (in an argument inquiry);

Open moves for argument inquiry open,; moves can be moved if the rule
would change the operative tree if it were moved as an argument (in a
warrant inquiry dialogue), or when the rule moved ends with a literal that
is in the topic of the current dialogue (in an argument inquiry);

Opening the dialogue open,,; and open,; moves can be moved when the di-
alogue is empty;

Closing a dialogue close moves can only be moved if they close the current
dialogue.

The changes to the protocol are now formally defined.

Definition 77. The protocol from Black and Hunter’s system adds the fol-
lowing protocol rules to those of Prakken’s framework.

If m, € Pr(D!), then:

Ry t(my) =0, t(my) = {0} or t(m,) = P(Ny)
as determined by determineTarget(DY);

Ry if 3m,, € D! such that s(m,) = s(m,,) then Performative(s(m,)) = close;

R if Performative(s(m,)) = assert
then OT (DY) # OT(D} U {m,}) or
Topic(Current(D) = & — 4
conc(Content(s(my))) € @
or conc(Content(s(my))) =9

Rg if Performative(s(my,)) = openg; and A = ruleToArg(Content(s(m,)),1)
then OT (DY) # OT (D} U {assert(A)}) or

108

Topic(Current(D}) = ® — 1)
conc(A) € ¢
or conc(A) = ¢

Ry if D! = D, then Performative(s(m,)) = openg; or
Performative(s(my)) = openay;

Ry if Performative(s(my,)) = closeq; or Performative(s(my)) = closey;
then Content(s(my)) = Topic(Current(DY))

6.7.1 Termination

Termination in the adapted system is identical to termination in Black and
Hunter’s system, as described in Definition 18, with one exception: the matched
close in Definition 17, which is defined for specifically 2 players, is expanded to
encompass all players in Z.

Definition 78. Given a dialogue D! and i participants in the set Z, a
matched close for D! occurs at ¢ when

Vm; € Di_;

s(m;) = closeg(7y)

and 0 = Type(Current(D: 1))

and v = Topic(Current(D:"1))
Vmy, € D§7i+1

and if Player(pl(m;)) = Player(pl(my))
then m; = my,.

6.7.2 Well-formed dialogues

The protocol already determines which dialogues are correct. Black and Hunter
also define that a dialogue must be terminated or that there is a dialogue that
extends the current dialogue and is terminated (meaning it will be terminated
in the future).

Definition 79. Any dialogue D! is well-formed iff
Diell
and
Jv such that
t<w
and DY extends D!
and D} terminates at v

6.7.3 Protocol additions based on underlying logic

As was discussed in the previous chapter, this adapted system does not specifi-
cally consider DeLLP or alternate underlying logics, as any underlying logic can

109

be used with the adapted system, simply by adding protocol rules to match the
logic. For example, if DeLLP were to be used, a protocol rule would be added to
enforce acceptable argumentation lines inside the operative dialogue tree.

6.8 Outcome and dialectical tree and graph

Now that the flow of dialogues has been worked out, the only thing remaining
is determining the outcome of a dialogue. Black and Hunter base the outcome
on the dialectical tree, while Prakken bases it on the dialogue tree.

6.8.1 Dialectical tree and graph

Since not all moves have a target in the dialogue, it is impossible to structure
all the moves in a tree shape. However, the operative dialogue tree defined in
Definition 72, a tree constructed using the moves that have targets, can be used.
This process gives us the following tree for Table 10 (performatives have been
omitted as these are all assert moves):

P3(1) : <{(a74)’ (a - b’4)}’b>

Os5(1) : ({(c,3), (c — =b,3)}, =b) 04(2) : ({(d,3),(d — —a,3)}, —a)

P6(2) : <{("d7 1)}7 "d> P18(2) : ({(672)7 ‘(e — d, 2)}7 ﬁd)
022(2) : {{(—e, 1)}, —e)

The operative dialogue tree is very similar to the dialectical tree used by Black
and Hunter to determine the outcome of their dialogues; if every node was
labelled with the content of the locution of the move, instead of the move itself,
the dialectical tree would be produced.

110

({(a,4), (e = b,4)},0)

<{(C,3),(C—> jb>3>}7ﬁb> <{(d’3)7(d_) ﬁ0'73)}7ﬁa>

<{(_‘d71)}7ﬁd> <{(6,2),(€ _" —d, 2)}7_'d>
<{(_‘e’ 1)},—\8>

Similarly, if the nodes of the tree were labelled with a dialectical representation
of the argument that is the content of the locution, the dialectical graph as
described in Prakken’s framework would be produced, either with or without
preference levels. Since it was shown earlier that Black and Hunter’s system
for inquiry dialogues does not allow argument extension, the dialectical graph
differs from the dialectical tree only in notation of the arguments.

o)
b/
‘ (c:3) (c—b,3) 43) (do-a3

/N

0@

Definition 80. The functions graph(D?), graphprever(DY) returns a dialecti-
cal graph gp¢ or graph g’fﬁevel, respectively without and with preference levels.
1

graph(D}) =

111

[for every node N € OT(D})
replace label of node N with its tableaux notation
without pLevels
graph_pLevel(DD =
for every node N € OT(D})
[replace label of node N with its tableaux notation

Replacing the labels of node N with their tableaux notation work as follows:
if [is the label of N and [€ S, no change is required.
if I is the label of N and [¢ S,

then | = (®, ¢) and is converted to %

6.8.2 Outcome

Definition 81. The outcome of an argument inquiry dialogue D! is

defined as a function Outcomey; : Dy; — P(Args).

Outcomey; (DY) = if Type(DY) # ai, then null, otherwise
{ Content(s(m;)) | m; € O(D}) }

Definition 82. The winner of an argument inquiry dialogue D! is
defined as a function Qutcomeg; : Dy; — Roles.

Winner,;(D}) =
P iff Outcome,; (DY) # 0
O iff Outcomey; (DY) =10
null otherwise

For a warrant inquiry dialogue, this is a more complex procedure; it requires
a check for relevance. Luckily, this was already defined in Definition 54, which
can be used here as well with a few small changes.

Definition 83. The last relevant move lastRelevant in a dialogue D} is
defined as:

lastRelevant(D%) =
m; iff m; € D} and
m; € O(DD
the status of Root(OT(D?Y))
the status of Root(OT(DY))
and ﬂmj € d such that
m; € O(DY) and
and the status of Root(OT(DY))
the status of Root(OT(D?))

112

Using the last relevant move, we can determine whether the Proponent role or
the Opponent role is winning. If the last relevant move was made using the
Proponent role, Proponent is winning.

Definition 84. The winner of a warrant inquiry dialogue D! is defined
as a function Outcome,,; : D — Roles.

Winner,,;(D}) =
P iff Role(pl(lastRelevant(D}))) = P
O otherwise.

Definition 85. The outcome of a warrant inquiry dialogue D! with an
operative dialogue tree OT'(D?) is defined as a function Qutcome,,; : D — Args.

Outcomey,; (DY) =
Root(OT(DY)) iff Winner,,;(D}) = P
null otherwise.

Basically, if the last relevant move was made using the role of Proponent, the
Proponent is currently winning, so the topic of the dialogue is warranted.

6.9 Example dialogues

Several examples of a dialogue in the framework are now given. These are con-
versions from examples from [3] to a dialogue in the framework. Conversion
from the framework back to inquiry can be shown later, as currently, no exam-
ple dialogue has been provided with the above definitions.

Since the warrant inquiry dialogue in Table 2 on page 27 is the most similar to
the framework, it provides a clear example of the conversion process and the
structure of a dialogue in the framework.

RoleTyn (Player) Performative(Content) Target
Pi(1): openy;(b)
Py(2) : closeyi(b)
Ps(1): assert({{(a,4),(a — b,4)},b)) 0
04(2) : assert({{(d,3),(d — —a,3)},a)) 3
O5(1): assert({{(c,3),(c — —b,3)}, b)) 3
Ps(2) . assert({{(—d, 1)}, ~d)) 4
Pr(1): |opengi(a —b)
Ps(2): | closeqi(a — b)
Py(1) closeqi(a — b)
0O10(2) openg;(d — —a)
011(1) : | closeqi(d — —a)
012(2) : | closeqi(d — —a)

Continued on Next Page. ..

113

Roleryn (Player) Performative(Content) Target
O15(1) : | opengi(c — —b)
014(2) : | closegi(c — —b)
O15(1) : | closeqi(c — —b)
Pis(2) 1 | opengi(e — —d)
Pr(1): | assert(({(e,2)},e))
Pig(2): | assert(({(e,2), (e = —d,2)},d)) 4
Pig(1): | closeqi(e — —d)
Pyo(2) 1 | closeqi(e — —d)
Po1(1) 1 closeywi(b)
022(2) : assert({{(—e, 1)}, —e)) 18
Py3(1) : closeq;(b)
Pyy(2): closeq;(b)

Table 10: A warrant inquiry dialogue in an adapted version of
Prakken’s framework

As can be seen clearly from the dialogue above, the difference with the original
dialogue is minimal. The structure of the moves is identical, the indexes of the
moves would be identical as well, had it not been for an error in the indexing of
the moves in the original example.

This dialogue has the following operative dialogue tree:
P3(1) : {{(a,4), (a — b,4)},b)

04(2) : <{(d7 3)7 (d - ~a, 3)}7 ﬁa) 05(1) : <{(C7 3)7 (C — b, 3)}7“b>

Ps(2) : ({(=d, 1)}, ~d) P13(2) : ({(e,2), ‘(e — =d, 2)}, ~d)
022(2) : ({(—e, 1)}, e)

Next, the argument inquiry example from the same section as the example above
is translated, to show that argument inquiry poses no problem for the adapted
framework. As was noted when this example was translated in Table 8, the
original example seems to be incomplete; two moves are possible at different
stages in the dialogue but are not present in the original example. These two
moves have been added to the dialogue below as move 12 and 16, and as a result,
a close has been dropped, as there was no player that needed to skip a turn at
that point.

114

Roleryn (Player) Performative(Content) Target
Pi(1): openg(c— d)
closegi(c — d)
opengi(b — ¢)

Py (2)
Pg(l) :
Pi2): |assert({(b,1)},5))
Ps(1): | assert(({(b,1),(b — ¢, 1)}, ¢))
Ps(2) : | closeqi(b— c)
Pr(1)+ TTopena(a —)
Py(2) : assert({{(a,1)},a))
A1)+ ||assert(({(a 1), (a = b, 1)}, 1)
Pip(2) : closeg;(a — b)
Pi(1): closeqi(a — b)
Pi5(2) : assert((a,1), (@ — b,1), (b —

{
D} e)
Py3(1) : close,”

Pi(l): “assert(({@)@ = BI,6 =] 0
¢,1),(c—d,1)},d))
Pis(2) : assert(({)(b,l), b — ¢1), (¢ — 0

)
Pi7(1): closegi(c — d)
Pig(2) 1 closeyi(c — d

Table 11: An argument inquiry dialogue in an adapted version of
Prakken’s framework

This dialogue clearly shows how it is possible for an argument inquiry dialogue
to provide multiple arguments, and the resulting operative dialogue graph, con-
taining 15 and 16:

Pi5(1) : ({(a,1),(a — b,1),(b = ¢,1),(c — d,1)},d) Pis(2) : ({(b,1),(b — ¢c,1),(c — d,1)},d)
Finally, an example medical dialogue from [3] is translated.

3t {(pain, 1), (nonCyc, 1), (preg, 2)}
¥? {(pain A nonCyc — mam, 3), (preg — —mam, 1)}

Roleryrn (Player) Performative(Content) Target
P1(2) : Openwi(mam)
Py(1): closey;(mam)
P5(2) : | opengi(pain A nonCyc — mam)
Py(1): | assert(({(pain,1)}, pain))
P5(2) : | closeq;(pain A nonCyc — mam)
Ps(1): | assert({({(nonCyc, 1)}, nonCyc))

Continued on Next Page. ..

115

Roleryn (Player) Performative(Content) Target
P:(2) . |assert({{(pain, 1), (nonCyc, 1), 0
(pain AnonCyc — mam, 3)}, mamy))

Py(1) closeq;(pain A nonCyc — mam)
Py(2) : | closegqi(pain A nonCyc — mam)
Pip(1) : closey,;(mam)
011(2) : | openg;i(preg — —-mam)
012(1) assert(({(preg,2)}, preg))
013(2) assert({{(preg,2), (preg — —mam, 7
1)}, =mam))
014(1) : | closeq;(preg — —mam)
015(2) : | closeq;(preg — —mam)
Pig(1) : closey;(mam)
Pi7(2) closeyi(mam)

Table 12: An example from the medical domain in an adapted
version of Prakken’s framework

This example shows how argument inquiry can be used to build an argument
for and against the topic. The tree for this dialogue looks like this:

P;(2) : ({(pain, 1), (nonCyc, 1), (pain A nonCyc — mam, 3)}, mam)

\
013(2) : ({(preg,2), (preg — —mam, 1)}, ~mam)

6.10 Converting dialogues to and from Black and Hunter’s
system for inquiry dialogues

6.10.1 Move conversion

With the above functions for moves and dialogues defined, moves from Black
and Hunter system for inquiry dialogues can now be converted into moves
in Prakken’s framework, with the adaptions from earlier definitions applied;
speech acts are assumed to be elements of the L. defined in Definition 67 and
role notation as defined in Definition 44. The functions determineRole and
determineTarget are defined in respectively Definitions 73 and 71.

Definition 86. Given a dialogue D! consisting of moves mq,...,m; in
the form of m; = (x;, performative;, content;) (0 < i < t), the function

moveToFramework of type moveToFramework : D +— P(M) is defined as

moveToFramework(D}) = (id, role(player), perf (content), target)

116

id =t
role(player) = determineRole(D?Y)

where perf = performative,
content = content;
target = determineTarget(D})

The conversion from moves in the framework to moves in Black and Hunter’s
system is significantly more simple.

Definition 87. Given a move (id,role(player), perf(content),t) using the
adaptions from earlier definitions, moveToInquiry of type moveT olnquiry :
P(M) — M is defined as

moveTolnquiry((id, role(player), perf (content),t)) = (player, perf, content)

6.10.2 Dialogue conversion

With the above functions defined, defining the function to convert a dialogue
from Prakken’s framework to Black and Hunter’s system for inquiry dialogues,
and vice versa, is a trivial matter. Since dialogues are nothing more than a
sequence of moves, to convert a dialogue its moves must simply be converted.

Definition 88. Given a well-formed dialogue D! consisting of moves my,
..., My, the function dialogueToFramework of type dialogueT oFramework :
D — P(M) is defined as
dialogueToFramework(Dt) =

{ moveToFramework(D}) | m; € D} }

Definition 89. Given a well-formed dialogue d; consisting of moves mq, ...,
my, the function dialogueToInquiry of type dialogueToInquiry : P(M) — D
is defined as
dialogueT oInquiry(d;) =

{ moveT oInquiry(m;) ‘ m; € dy }

The following Lemmas are used to construct the proof for Proposition 5.

First, a lemma is provided to show that the structure of dialogues in unaffected
by conversion.

Lemma 22. Dialogue conversion makes no changes in the order of moves.

Proof This can be seen from Definition 88 and 89, as dialogue conversion is
merely move conversion applied to every move. [l

Next, a lemma is provided to show that move conversion to the adapted sys-
tem only adds information that the adapted system needs, and does not remove

117

anything, and vice versa.

Lemma 23. No information is removed from a move when it is converted
to the adapted system. The only information that is added is necessary for the
adapted system, and is derived from the dialogue itself.

No information is added to a move when it is converted to Black and Hunter’s
system. The only information that is removed is unnecessary in Black and
Hunter’s system.

Proof From Definition 86 and 87. [

Proposition 5. If D! is a well-formed dialogue in Black and Hunter’s system
and dialogueToFramework(Dt) = d, then d is a well-formed dialogue in the
adapted system. Similarly, if d is a well-formed dialogue in the adapted system
and dialogueToInquiry(d,) = DY, then DY is a well-formed dialogue in Black
and Hunter’s system.

Proof From Lemma 22 and 23 we can conclude that given a well-formed dia-
logue, the conversion functions provide a well-formed dialogue. O

In order to prove that the conversion provides an equivalent dialogue, but in a
different system, the measure of equivalence from Definition 64 can be used.

A proof is constructed to show that a dialogue before the conversion and the di-
alogue after the conversion are equivalent according to the above criteria. This
proof is very similar to the proof constructed for the adapted system in the

previous chapter.

The following Lemmas are used to construct the proof for Proposition 6.

Arguments By definition of the move conversion functions, the content of
moves is not altered in any way and by definition of the dialogue conversion
functions, nothing is done except the conversion of moves.

Lemma 24. The content of assert moves is not altered when moves are
converted.

Proof From Definition 86 and 87. [J

From this, we can conclude that no argument has been changed, added or re-
moved during conversion.

Lemma 25. Arguments cannot change during dialogue conversion.

118

Proof From Lemma 24 and 22. 0O

A function has been provided to create the dialectical tree from a dialogue, us-
ing only the operative moves.

Lemma 26. Every move in the dialectical tree in Black and Hunter’s system
is an operative move in the adapted system.

Proof From Definition 70. O

From the definitions of the dialectical tree and the operative dialogue tree, we
can conclude that the operative dialogue tree and the dialectical tree are the
same, except for move notation.

Lemma 27. Every operative move must also be in the dialectical tree, and
anything in the dialectical tree is in the operative dialogue tree.

Proof From Definition 72. O

Thus, the dialectical trees are identical.

Committed facts In order to prove that the same committed facts have been
used, the commitment functions are examined. Both Black and Hunter’s system
and the adapted system only make changes to the commitment stores when an
assert move is made. It was shown above that these are the same, and that
there are no new beliefs introduced in these arguments.

Lemma 28. The commitment store of the dialogue before and after transla-
tion contains the same facts.

Proof From Lemma 25 we know that the assert moves must be the same. Thus,
by Definitions 75 and 20, the same facts will be in the commitment stores. [

We can conclude that there cannot be more committed facts than there are in
the original dialogue, but we can also conclude that there cannot be less, by
looking at the commitment functions. Since these function are nearly identical
(except for the difference of players and roles, which is ignored as it has no
consequence for the content of the combined commitment stores), it is safe to
say there are no difference in this area either.

Outcome It has already been shown that the dialectical trees are equal. Black
and Hunter base the outcome of a dialogue on the status of nodes in the dialec-
tical tree. While the adapted system does not, the outcome is designed to give
a similar result: a set of arguments when the dialogue is an argument inquiry
dialogue, or a fact that is deemed warranted if the dialogue is a warrant inquiry

119

dialogue.

The outcome of the adapted system is based on the last relevant move, which is
based on the operative dialogue tree. Since the operatives dialogue tree has the
same structure as the dialectical tree, this is identical to basing the outcome on
the dialectical tree.

Lemma 29. The outcome of the dialogue before and after translation is
unchanged.

Proof Definition 54 shows that the last relevant move is based on the operative
dialogue tree. Lemma 27 shows that this is equal to the dialectical tree, so the
outcome is based on the same measure. [

Proposition 6. If D! is a well-formed dialogue in Black and Hunter’s sys-
tem and dialogueToFramework(Dt) = d, then d and DY} are equivalent di-
alogues. Similarly, if d is a well-formed dialogue in the adapted system and
dialogueT oInquiry(d,) = DY, then DY and d are equivalent dialogues.

Proof From Lemma 26, 27, 28 and 29, we can conclude that the dialogues are
equivalent. [J

6.11 Generating dialogues

Aside from a system for inquiry dialogues, Black and Hunter have also provided
an agent strategy for use in generating dialogues. They have proven that the
dialogues generated by agents using this exhaustive strategy are always sound
and complete, based on the agent’s belief bases. This strategy can be used with
minor changes in the adapted system.

The following minor changes are required, however: the rules for open must be
fit to openg; and open,,; and the same must be done for close moves, and the
moves must have targets.

Definition 90. The exhaustive strategy 2,(d), for player = participating
in a dialogue D} is a function Q, : D+ M and is defined as:

Q,(Dy) =
Pick,(Asserts, (DY) iff Asserts,(d) # 0
Pick,(Opens, (D)) iff Asserts,(d) =0
and Opens,(d) # ()
Close, (DY) iff Asserts,(d) =10
and Opens,(d) =0
where

120

= as defined in Definition 26, with altered move notation;

—
_4
—
._4

H Pick,(

Pick,(= as defined in Definition 26, with altered move notation;
and
Asserts, (DY) =
m m € Pr(D}) and
s(m) = assert(A) and
A e AX*UCHP)UCLO))
an
Opensx Di
m € Pr(D!) and
s(m) = openg;(R) and
Jp € Ny such that (R,p) € X%
and (R,p) € R
m | m € Pr(D}) and
s(m) = openq;(¢) and
peS*
and
Close, (DY) =

m such that m € Pr(D}) and
s(m) = closeg(y) such that
0 = Type(Current(D?)) and
v = Topic(Current(DY))

6.11.1 Proof of equivalence

The following Lemmas are used to construct the proof for Proposition 7.

As in the previous chapter, in order to show that the adapted exhaustive strat-
egy produces the same dialogues as the original exhaustive strategy, the dialogue
equivalence conditions from Definition 64 is used.

Lemma 30. The Pick, and Pick, functions are identical to Black and
Hunter’s definition, except for notation. The Asserts, function has been rewrit-
ten for the adapted system to reflect the changes in role notation, but is other-
wise unchanged.

Arguments Since the only changes in Asserts, were made to account for the
change in notation, Asserts, generates the same arguments Black and Hunter’s
Asserts, function generates.

Lemma 31. Asserts, provides every argument the original in Black and
Hunter’s system does.

Committed facts On the basis of the equivalence condition of arguments,
this must be the same.

121

Lemma 32. Given the same belief bases, the committed facts in a dialogue
generated by the adapted exhaustive strategy and those in a dialogue generated
by Black and Hunter’s exhaustive strategy are identical.

Proof From Lemma 31 and the commitment functions in Definition 75 and 20.
O

Outcome Black and Hunter prove soundness and completeness on the out-
come of the dialogue when the exhaustive strategy is used. This must also
be possible with the adapted exhaustive strategy. Fortunately, this can also
be based on the fact that the set of arguments is equivalent and the fact that
Opens, in Definition 90 is equivalent to Opens, defined by Black and Hunter,
except for the first move of a dialogue, which is not present in the strategy
defined by Black and Hunter. This ensures that a dialogue is created with the
same structure as the one that would be created by the original exhaustive
strategy.

Lemma 33. The outcome of a dialogue generated by the adapted exhaustive
strategy from Definition 90 is equivalent to the outcome of a dialogue generated
by Black and Hunter’s exhaustive strategy, given the same belief bases.

Proof From Lemma 30, 31 and 29. [

Proposition 7. Vd that is a dialogue produced by the exhaustive strategy
defined in Definition 65, 3D? such that D is generated by Black and Hunter’s
exhaustive strategy and dialogueTolnquiry(d) = D} and VDY that is a dia-
logue produced by Black and Hunter’s exhaustive strategy, 3d’ such that d’ is
generated by the exhaustive strategy from Definition 65 and

dialogueT oFramework(DY}) = d'.

Proof Lemma 30 through 33 show that the conditions in Definition 64 are
met by dialogues generated by Black and Hunter’s exhaustive strategy and the
strategy defined in Definition 90, so that given the same belief bases, equivalent
dialogues are generated. [J

6.12 Fundamental properties

As in the previous chapter, the adapted system can be compared to the fun-
damental properties of Black and Hunter’s system for inquiry dialogues. The
distinction between agents and roles is clear in the adapted system; this funda-
mental property has been preserved. The exhaustive strategy has been success-
fully converted to the adapted system, so the predetermined result and sound-
ness and completeness, benchmarked on the belief bases has also been preserved.

122

Unlike the previously described adapted system, the simplicity of moves has
been preserved; the distinction between open and close moves for argument and
warrant inquiry has been made more explicit, and targets and roles have been
added to the moves, but the simplicity is the same.

Black and Hunter use the dialectical tree to determine the targeting of the
moves. In a way, the targeting that has been added in this adapted system
is similar; it uses the operative dialogue tree, which can be converted to the
dialectical tree. By definition, the moves in the operative dialogue tree contain
the arguments that appear in the dialectical tree of a dialogue in Black and
Hunter’s system, and from the definition of the function that assigns target to
moves it must be that they are structured in the same way. Argument inquiry
dialogues do not produce such a tree, rather they produce a graph of operative
moves. This is not problematic, as Black and Hunter do not use the dialectical
tree for argument inquiry dialogues either.

Lastly, the cooperative nature of the dialogue has been preserved when viewed
from an agent’s perspective, but not when viewed from a role. There are specific
Proponent and Opponent roles, so the competitive element present in persua-
sion dialogues has been incorporated into the adapted system. From an agent’s
perspective, however, these are merely tools which are used when they are con-
venient. They make explicit whether a move aims to prove or disprove the topic
of the dialogue, a property that was implicit in moves in Black and Hunter’s
system.

6.12.1 Compatibility with Prakken’s original framework

Unfortunately, by changing the targeting of moves and allowing zero to many
targets, compatibility with proofs for Prakken’s framework may be problematic.
These proofs assume the basic structure of moves that have a single target.

However, when the operative dialogue tree is compared to a dialogue tree in
Prakken’s framework there are not only clear similarities; the entire issue of
moves without target or moves with multiple targets is not present in the op-
erative dialogue tree. If only the operative moves (as these are the only moves
that have targets) are considered to be in the dialogue for Prakken’s proofs,
and moves with multiple targets are considered to be moved multiple times, the
resulting dialogue is compatible with Prakken’s proofs.

For example, if the dialogue in Table 10 were reduced as described above, the
following dialogue would remain:

Roleryrn (Player) Performative(Content) ‘ Target
Pl(l) : assert(({(a,4),(a—> ba4)}ab>) ‘ 0
Continued on Next Page. ..

123

Roleryn (Player) Performative(Content) Target
02(2): assert({{(d,3),(d — —a,3)},a)) 1
05(1): assert(({(c:3), (¢ — ~b, 3)}, b)) I
Py(2) : assert(({(—' , D)}, —d)) 2
P5(2) : assert({{(e,2), (e — —d,2)},~d)) 2
06(2) : assert({({(—e, 1)}, —e)) 5

Table 13: A warrant inquiry dialogue in an adapted version of
Prakken’s framework

It is likely that any dialogue in this adapted system that is reduced as described
above results in a dialogue that is not only fully compatible with Prakken’s
proofs, but even Prakken’s original framework. This can be easily explained?3:

Only fully realised arguments Since only fully realised arguments are present
in this form of dialogue, there are no problems with incomplete arguments,
sub-dialogues to construct arguments, etc. Of course, this means that this
form of dialogue is inadequate for constructing these arguments as is done
in the adapted system, but that is not the aim here.

Only a single type of move Since the only type of move left in this form of
dialogue is the assert move, attack relations become extremely simple, and
most proofs that are concerned with move relations could be reduced to
examining the logical content of the moves (i.e. proving that the dialogue
tree provides the same conclusion as would be reached when reasoned from
all asserted arguments; the assert moves attack every move they can by
definition).

6.13 Summary

This chapter has shown that it is possible to adapt Prakken’s framework to fit
Black and Hunter’s system for inquiry dialogues without losing the fundamental
properties of Black and Hunter’s system. The cost of the change is significant,
as targeting rules have been changed, which has some influence on Prakken’s
proofs. This means that any statement made about Prakken’s framework needs
to be verified in the new system to determine whether it is applicable to this
adapted system.

If only the operative moves are considered (since the open and close moves are
not relevant for outcome of a dialogue), and moves with multiple targets are du-
plicated, the dialogue is effectively a normal dialogue in Prakken’s framework,
and any statement made about the framework is applicable to this dialogue.
This way, it is likely that most of Prakken’s proofs are applicable to the adapted

33Exact proof will be left for future research.

124

system.

Functions have been provided to convert dialogues to and from the adapted
system, with a 1 to 1 conversion. This means that any statement made about
a Black and Hunter’s system is applicable to this adapted system.

The exhaustive strategy defined by Black and Hunter has also been defined for
the adapted system, and the differences are small, reflecting the changes in the
speech acts.

Finally, no mention has been made about restrictions on the number of players
in Z, and the players have been effectively disconnected from the dialogue; they
make the moves, but the fact that a move is made by ¢ € 7 has no consequence
whatsoever, since Prakken’s proofs use the roles, not the agents?.

34Recall that his definition of agents was renamed roles.

125

7 Conclusion

In the previous chapters, two systems for inquiry dialogues have been described
that respectively adapt Black and Hunter’s system for inquiry dialogues to
Prakken’s framework and adapt Prakken’s framework to Black and Hunter’s
system. Both of these are able to describe dialogues that are equivalent3® to
the dialogues described by Black and Hunter’s system for inquiry dialogues; any
well-formed dialogue that can be formulated in Black and Hunter’s system has
an equivalent dialogue in the adapted systems, and vice versa.

Additionally, the exhaustive strategy Black and Hunter provided as a determin-
istic method to construct inquiry dialogues has been translated to both systems,
and has been shown to produce dialogues that are equivalent to the dialogues
produced by the original exhaustive strategy.

Finally, while the first adapted system is by definition compatible with Prakken’s
framework, for the second adapted system the proofs and properties that are
shown for Prakken’s framework can only be applied to a modified version of the
dialogue, considering only the operative moves.

Prakken’s Adapted Black and Hunter’s
framework system system
di < DY — DY
! 1 |
dj — Di/ — D(ll
! ! |
d, < Di o D

From the results described above, the bisimulation can be concluded. The bidi-
rectional arrows between the adapted system and Black and Hunter’s system
have been provenS, as well as the bidirectional arrows between the adapted
system and Prakken’s framework.

The cost and limitations of this translation will be discussed using the research
questions as a guideline.

7.1 Research question

What are the consequences of adapting Black and Hunter’s inquiry dialogues
to Prakken’s persuasion framework, and vice versa, and what properties can we
derive from this? What can we say about the system for inquiry dialogues on
the basis of its similarities and differences with persuasion dialogues?

35 According to the definition of equivalence in Definition 64
36Fully proven for the first adapted system and partially for the second adapted system.

126

First, it has been shown that Prakken’s framework can indeed be applied to
inquiry dialogues, and specifically to Black and Hunter’s system for inquiry dia-
logues. The modification required was significant, however it must be noted that
most of the modifications were required because of the structure of dialogues
and subdialogues that Black and Hunter use. Using subdialogues to produce an
argument is quite useful, as they avoid Prakken’s backward extension of argu-
ments, and allow agents to jointly construct these arguments.

The most important alteration was the separation of roles (in the persuasion di-
alogue) and players (in the inquiry dialogue). This separation is what allows the
cooperative nature of inquiry dialogues to be reflected while using persuasion
dialogues, allowing players to move as Proponent or Opponent to the dialogue
topic, and even attack moves they made themselves, using a different role.

Since it was shown that dialogues in the adapted system are equivalent to dia-
logues in Black and Hunter’s system, and the same equivalence has been shown
for the dialogues generated by the exhaustive strategy provided by Black and
Hunter, any property that Black and Hunter have shown for their system also
applies to the adapted systems. For example, the proof they provide for sound-
ness and completeness when using the exhaustive strategy can also be applied
to the adapted systems.

Proofs and properties from systems in Prakken’s framework with compatible
protocols can also be applied to the first adapted system without difficulty, as
no change has been made to the framework in the first adapted system. In the
second adapted system, properties can be applied to the set of operative moves,
but this is not proven formally.

Given the above, the differences between Black and Hunter’s system for inquiry
dialogues and Prakken’s framework for persuasion dialogues can be resolved with
limited changes to the fundamental properties of both systems. The important
properties like the cooperative nature of the dialogue have been preserved, and
the fundamental properties that were abandoned have not proved to be problem-
atic; like the absence of move targeting in Black and Hunter’s system that was
abandoned in the first adapted system, or the requirement of exactly one target
per move in Prakken’s framework that was abandoned in the second adapted
system.

The adapted systems allow for an even more significant conclusion: if, in the
adapted systems, a maximum of two players were allowed and these players
were directly tied to their role (so for example only P(1) and O(2) are allowed),
both systems would describe persuasion dialogues. The differences that are left
are directly the consequence of the choices made with respect to the method
of argument construction, rather than specific for inquiry dialogues; though the
choice of dialogue type might influence the type of argument construction, this
is a consideration of the creator of the system, and both methods are practical

127

possibilities in both inquiry and persuasion dialogues.

With this insight, we can have another look at the table in Figure 1. We have
concluded above that the difference between persuasion and inquiry dialogues,
or Walton and Krabbe’s initial states of ‘Conflict’ and ‘Open problem’, can be
reduced to whether players are tied to roles in the dialogue. It is likely the same
might be applied to negotiation and deliberation dialogues.

7.2 Relevance

The field of dialogue games is broad, but research is not equally distributed
amongst the different types of dialogue games. Persuasion is the most popular
type of dialogue of the types defined by Walton and Krabbe; more properties
have been proven of persuasion dialogues and more situations have been de-
scribed using persuasion dialogues than have been proven of or described with
inquiry dialogues.

This thesis has shown that it is possible to overcome the differences between
persuasion and inquiry dialogues, allowing inquiry dialogue to be formulated
inside a framework for persuasion. Typically, this will only require a separation
of players from the roles in the dialogue.

The majority of research into persuasion dialogues can therefore be applied
to inquiry dialogues as well, increasing the volume of research that relates to
inquiry dialogues significantly.

7.3 Proposed research

Many lines of research can be constructed from this conclusion. First, the proof
that the properties of Prakken’s framework can be applied to the operative
moves of a dialogue in the second adapted system has not been formally given;
this provides a possible avenue for additional research. It might also be inter-
esting to see how these results compare to other dialogue types.

In [4] it was shown that Prakken’s framework can be adapted to express delib-
eration dialogues, however Prakken’s framework needed to be modified signifi-
cantly. Perhaps further research might produce similar results for deliberation
and negotiation dialogues as have been shown here for persuasion and inquiry
dialogues.

Additionally, Walton and Krabbe have provided more types of dialogue for
which the same might be investigated. ‘Information seeking’ is similar to in-
quiry in terms of goal of the dialogue, but the initial state is determined to be
an ‘Unsatisfactory spread of information’. This might not require any changes
to be formulated inside an inquiry dialogue, where one player provides most of

128

the information.

Another interesting avenue for further research is complexity and performance.
The complexity and performance of the systems described or constructed in
previous chapters have not been considered. It is possible that the adapted
systems produce significantly larger trees than the individual systems by Black
and Hunter and Prakken. No measure of complexity has been given for the
exhaustive strategy, nor for the exhaustive strategies of the adapted systems. A
difference in complexity for the exhaustive strategy might make either system
more or less preferred for practical usage.

Finally, the practical applications for these systems are an interesting topic of
research. Several scenarios can be constructed in which we could compare one
of the inquiry systems in this thesis to other methods for jointly constructing
new knowledge.

129

References

[1]

[2]

Leila Amgoud, Simon Parsons, and Nicolas Maudet. Arguments, dialogue,
and negotiation. Journal of Artificial Intelligence Research, 23:2005, 2000.

Elizabeth Black and Anthony Hunter. A generative inquiry dialogue sys-
tem. In AAMAS °07: Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 1010-1017. ACM,
2007.

Elizabeth Black and Anthony Hunter. An inquiry dialogue system. Au-
tonomous Agents and Multi-Agent Systems, 19(2):173-209, 2009.

Henry Prakken Eric M. Kok, John-Jules Ch. Meyer and Gerard A. W.
Vreeswijk. A formal argumentation framework for deliberation dialogues.
Argumentation in Multi-Agent Systems: Sixth International Workshop,
2010.

Alejandro J. Garcfa and Guillermo R. Simari. Defeasible logic program-
ming: an argumentative approach. Theory and Practice of Logic Program-
ming, 4(2):95-138, 2004.

Peter McBurney and Simon Parsons. Representing epistemic uncertainty by
means of dialectical argumentation. Annals of Mathematics and Artificial
Intelligence, 32(1-4):125-169, 2001.

Simon Parsons, Michael Wooldridge, and Leila Amgoud. On the outcomes
of formal inter-agent dialogues. In AAMAS ’03: Proceedings of the Sec-
ond International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 616623, New York, NY, USA, 2003. ACM.

Henry Prakken. Coherence and flexibility in dialogue games for argumen-
tation. Journal of Logic and Compututation, 15(6):1009-1040, 2005.

Henry Prakken and Giovanni Sartor. Argument-based logic programming
with defeasible priorities. Journal of Applied Non-classical Logics, special
issue on ‘Handling inconsistency in knowledge systems’, 7:25-75, 1997.

Douglas N. Walton and Erik C. W. Krabbe. Commitment in dialogue:
Basic concepts of interpersonal reasoning. State University of New York
Press, 1995.

130

